Contrastive Open-Set Active Learning-Based Sample Selection for Image Classification

In this paper, we address a complex but practical scenario in Active Learning (AL) known as open-set AL, where the unlabeled data consists of both in-distribution (ID) and out-of-distribution (OOD) samples. Standard AL methods will fail in this scenario as OOD samples are highly likely to be regarde...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 04., Seite 5525-5537
1. Verfasser: Yan, Zizheng (VerfasserIn)
Weitere Verfasser: Ruan, Delian, Wu, Yushuang, Huang, Junshi, Chai, Zhenhua, Han, Xiaoguang, Cui, Shuguang, Li, Guanbin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article