Potential Application of 2D Haeckelite MoS2 as an Anode Material for Mg Ion Batteries
The design and preparation of anode materials with structural stability, fast ion transmission, and low open-circuit voltage are critical to the development of magnesium ion batteries (MIBs). The feasibility of the unique phase Haeckelite MoS2 (Hae-MoS2) monolayer with Haeckelite structure as a pote...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 37 vom: 17. Sept., Seite 19396-19403 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | The design and preparation of anode materials with structural stability, fast ion transmission, and low open-circuit voltage are critical to the development of magnesium ion batteries (MIBs). The feasibility of the unique phase Haeckelite MoS2 (Hae-MoS2) monolayer with Haeckelite structure as a potential anode material for MIBs was investigated using density functional theory (DFT) calculations. The Hae-MoS2 monolayer exhibits excellent structural stability and semimetallic characteristics with a Dirac cone located at the Gamma point of band structure. Mg ion is easily adsorbed on the Hae-MoS2 monolayer surface with an adsorption energy of -2.06 eV and can diffuse rapidly with a low diffusion energy barrier (0.3 eV), indicating excellent charge and discharge rates. Most importantly, the Hae-MoS2 monolayer exhibits a suitable open-circuit voltage, which falls within the desired voltage range and ensures the safety of battery performance. These exceptional properties indicate that the Hae-MoS2 monolayer can be proposed as a candidate for anode material for MIBs |
---|---|
Beschreibung: | Date Revised 17.09.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c01637 |