The electrocatalytic degradation of 1,4-dioxane by Co-Bi/GAC particle electrode

© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 90(2024), 4 vom: 31. Aug., Seite 1132-1148
1. Verfasser: Wang, Rui (VerfasserIn)
Weitere Verfasser: Dai, Zhineng, Zhang, Wenqi, Ma, Chao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article 1 4-dioxane Co–Bi/GAC particle electrode response surface methodology three-dimensional electrocatalysis Dioxanes 1,4-dioxane J8A3S10O7S mehr... Cobalt 3G0H8C9362 Water Pollutants, Chemical Bismuth U015TT5I8H Charcoal 16291-96-6
Beschreibung
Zusammenfassung:© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Efficient degradation of industrial organic wastewater has become a significant environmental concern. Electrochemical oxidation technology is promising due to its high catalytic degradation ability. In this study, Co-Bi/GAC particle electrodes were prepared and characterized for degradation of 1,4-dioxane. The electrochemical process parameters were optimized by response surface methodology (RSM), and the influence of water quality factors on the removal rate of 1,4-dioxane was investigated. The results showed that the main influencing factors were the Co/Bi mass ratio and calcination temperature. The carrier metals, Co and Bi, existed mainly on the GAC surface as Co3O4 and Bi2O3. The removal of 1,4-dioxane was predominantly achieved through the synergistic reaction of electrode adsorption, anodic oxidation, and particle electrode oxidation, with ·OH playing a significant role as the main active free radical. Furthermore, the particle electrode was demonstrated in different acid-base conditions (pH = 3, 5, 7, 9, and 11). However, high concentrations of Cl- and NO3- hindered the degradation process, potentially participating in competitive reactions. Despite this, the particle electrode exhibited good stability after five cycles. The results provide a new perspective for constructing efficient and stable three-dimensional (3D) electrocatalytic particle electrodes to remove complex industrial wastewater
Beschreibung:Date Completed 31.08.2024
Date Revised 31.08.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2024.274