Decouple Ego-View Motions for Predicting Pedestrian Trajectory and Intention

Pedestrian trajectory prediction is a critical component of autonomous driving in urban environments, allowing vehicles to anticipate pedestrian movements and facilitate safer interactions. While egocentric-view-based algorithms can reduce the sensing and computation burdens of 3D scene reconstructi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 26., Seite 4716-4727
1. Verfasser: Zhang, Zhengming (VerfasserIn)
Weitere Verfasser: Ding, Zhengming, Tian, Renran
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Pedestrian trajectory prediction is a critical component of autonomous driving in urban environments, allowing vehicles to anticipate pedestrian movements and facilitate safer interactions. While egocentric-view-based algorithms can reduce the sensing and computation burdens of 3D scene reconstruction, accurately predicting pedestrian trajectories and interpreting their intentions from this perspective requires a better understanding of the coupled vehicle (camera) and pedestrian motions, which has not been adequately addressed by existing models. In this paper, we present a novel egocentric pedestrian trajectory prediction approach that uses a two-tower structure and multi-modal inputs. One tower, the vehicle module, receives only the initial pedestrian position and ego-vehicle actions and speed, while the other, the pedestrian module, receives additional prior pedestrian trajectory and visual features. Our proposed action-aware loss function allows the two-tower model to decompose pedestrian trajectory predictions into two parts, caused by ego-vehicle movement and pedestrian movement, respectively, even when only trained on combined ego-view motions. This decomposition increases model flexibility and provides a better estimation of pedestrian actions and intentions, enhancing overall performance. Experiments on three publicly available benchmark datasets show that our proposed model outperforms all existing algorithms in ego-view pedestrian trajectory prediction accuracy
Beschreibung:Date Revised 02.09.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2024.3445734