Decouple Ego-View Motions for Predicting Pedestrian Trajectory and Intention
Pedestrian trajectory prediction is a critical component of autonomous driving in urban environments, allowing vehicles to anticipate pedestrian movements and facilitate safer interactions. While egocentric-view-based algorithms can reduce the sensing and computation burdens of 3D scene reconstructi...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 26., Seite 4716-4727 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Pedestrian trajectory prediction is a critical component of autonomous driving in urban environments, allowing vehicles to anticipate pedestrian movements and facilitate safer interactions. While egocentric-view-based algorithms can reduce the sensing and computation burdens of 3D scene reconstruction, accurately predicting pedestrian trajectories and interpreting their intentions from this perspective requires a better understanding of the coupled vehicle (camera) and pedestrian motions, which has not been adequately addressed by existing models. In this paper, we present a novel egocentric pedestrian trajectory prediction approach that uses a two-tower structure and multi-modal inputs. One tower, the vehicle module, receives only the initial pedestrian position and ego-vehicle actions and speed, while the other, the pedestrian module, receives additional prior pedestrian trajectory and visual features. Our proposed action-aware loss function allows the two-tower model to decompose pedestrian trajectory predictions into two parts, caused by ego-vehicle movement and pedestrian movement, respectively, even when only trained on combined ego-view motions. This decomposition increases model flexibility and provides a better estimation of pedestrian actions and intentions, enhancing overall performance. Experiments on three publicly available benchmark datasets show that our proposed model outperforms all existing algorithms in ego-view pedestrian trajectory prediction accuracy |
---|---|
Beschreibung: | Date Revised 02.09.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2024.3445734 |