Fast and High-Performance Learned Image Compression With Improved Checkerboard Context Model, Deformable Residual Module, and Knowledge Distillation
Deep learning-based image compression has made great progresses recently. However, some leading schemes use serial context-adaptive entropy model to improve the rate-distortion (R-D) performance, which is very slow. In addition, the complexities of the encoding and decoding networks are quite high a...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 26., Seite 4702-4715
|
1. Verfasser: |
Fu, Haisheng
(VerfasserIn) |
Weitere Verfasser: |
Liang, Feng,
Liang, Jie,
Wang, Yongqiang,
Fang, Zhenman,
Zhang, Guohe,
Han, Jingning |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Schlagworte: | Journal Article |