Fast and High-Performance Learned Image Compression With Improved Checkerboard Context Model, Deformable Residual Module, and Knowledge Distillation

Deep learning-based image compression has made great progresses recently. However, some leading schemes use serial context-adaptive entropy model to improve the rate-distortion (R-D) performance, which is very slow. In addition, the complexities of the encoding and decoding networks are quite high a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 26., Seite 4702-4715
1. Verfasser: Fu, Haisheng (VerfasserIn)
Weitere Verfasser: Liang, Feng, Liang, Jie, Wang, Yongqiang, Fang, Zhenman, Zhang, Guohe, Han, Jingning
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM376736178
003 DE-627
005 20240903232915.0
007 cr uuu---uuuuu
008 240827s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3445737  |2 doi 
028 5 2 |a pubmed24n1522.xml 
035 |a (DE-627)NLM376736178 
035 |a (NLM)39186412 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fu, Haisheng  |e verfasserin  |4 aut 
245 1 0 |a Fast and High-Performance Learned Image Compression With Improved Checkerboard Context Model, Deformable Residual Module, and Knowledge Distillation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep learning-based image compression has made great progresses recently. However, some leading schemes use serial context-adaptive entropy model to improve the rate-distortion (R-D) performance, which is very slow. In addition, the complexities of the encoding and decoding networks are quite high and not suitable for many practical applications. In this paper, we propose four techniques to balance the trade-off between the complexity and performance. We first introduce the deformable residual module to remove more redundancies in the input image, thereby enhancing compression performance. Second, we design an improved checkerboard context model with two separate distribution parameter estimation networks and different probability models, which enables parallel decoding without sacrificing the performance compared to the sequential context-adaptive model. Third, we develop a three-pass knowledge distillation scheme to retrain the decoder and entropy coding, and reduce the complexity of the core decoder network, which transfers both the final and intermediate results of the teacher network to the student network to improve its performance. Fourth, we introduce L1 regularization to make the numerical values of the latent representation more sparse, and we only encode non-zero channels in the encoding and decoding process to reduce the bit rate. This also reduces the encoding and decoding time. Experiments show that compared to the state-of-the-art learned image coding scheme, our method can be about 20 times faster in encoding and 70-90 times faster in decoding, and our R-D performance is also 2.3% higher. Our method achieves better rate-distortion performance than classical image codecs including H.266/VVC-intra (4:4:4) and some recent learned methods, as measured by both PSNR and MS-SSIM metrics on the Kodak and Tecnick-40 datasets 
650 4 |a Journal Article 
700 1 |a Liang, Feng  |e verfasserin  |4 aut 
700 1 |a Liang, Jie  |e verfasserin  |4 aut 
700 1 |a Wang, Yongqiang  |e verfasserin  |4 aut 
700 1 |a Fang, Zhenman  |e verfasserin  |4 aut 
700 1 |a Zhang, Guohe  |e verfasserin  |4 aut 
700 1 |a Han, Jingning  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 26., Seite 4702-4715  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:26  |g pages:4702-4715 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3445737  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 26  |h 4702-4715