|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM376381302 |
003 |
DE-627 |
005 |
20250306131211.0 |
007 |
cr uuu---uuuuu |
008 |
240817s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2024.3444457
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1253.xml
|
035 |
|
|
|a (DE-627)NLM376381302
|
035 |
|
|
|a (NLM)39150800
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xiao, Guobao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a T-Net++
|b Effective Permutation-Equivariance Network for Two-View Correspondence Pruning
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We propose a conceptually novel, flexible, and effective framework (named T-Net++) for the task of two-view correspondence pruning. T-Net++ comprises two unique structures: the "-'' structure and the "|'' structure. The "-'' structure utilizes an iterative learning strategy to process correspondences, while the "|'' structure integrates all feature information of the "-'' structure and produces inlier weights. Moreover, within the "|'' structure, we design a new Local-Global Attention Fusion module to fully exploit valuable information obtained from concatenating features through channel-wise and spatial-wise relationships. Furthermore, we develop a Channel-Spatial Squeeze-and-Excitation module, a modified network backbone that enhances the representation ability of important channels and correspondences through the squeeze-and-excitation operation. T-Net++ not only preserves the permutation-equivariance manner for correspondence pruning, but also gathers rich contextual information, thereby enhancing the effectiveness of the network. Experimental results demonstrate that T-Net++ outperforms other state-of-the-art correspondence pruning methods on various benchmarks and excels in two extended tasks
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Liu, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhong, Zhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xiaoqin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Jiayi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ling, Haibin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 46(2024), 12 vom: 16. Dez., Seite 10629-10644
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnas
|
773 |
1 |
8 |
|g volume:46
|g year:2024
|g number:12
|g day:16
|g month:12
|g pages:10629-10644
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2024.3444457
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 46
|j 2024
|e 12
|b 16
|c 12
|h 10629-10644
|