T-Net++ : Effective Permutation-Equivariance Network for Two-View Correspondence Pruning

We propose a conceptually novel, flexible, and effective framework (named T-Net++) for the task of two-view correspondence pruning. T-Net++ comprises two unique structures: the "-'' structure and the "|'' structure. The "-'' structure utilizes an iterativ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 16. Dez., Seite 10629-10644
1. Verfasser: Xiao, Guobao (VerfasserIn)
Weitere Verfasser: Liu, Xin, Zhong, Zhen, Zhang, Xiaoqin, Ma, Jiayi, Ling, Haibin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM376381302
003 DE-627
005 20250306131211.0
007 cr uuu---uuuuu
008 240817s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3444457  |2 doi 
028 5 2 |a pubmed25n1253.xml 
035 |a (DE-627)NLM376381302 
035 |a (NLM)39150800 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiao, Guobao  |e verfasserin  |4 aut 
245 1 0 |a T-Net++  |b Effective Permutation-Equivariance Network for Two-View Correspondence Pruning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a conceptually novel, flexible, and effective framework (named T-Net++) for the task of two-view correspondence pruning. T-Net++ comprises two unique structures: the "-'' structure and the "|'' structure. The "-'' structure utilizes an iterative learning strategy to process correspondences, while the "|'' structure integrates all feature information of the "-'' structure and produces inlier weights. Moreover, within the "|'' structure, we design a new Local-Global Attention Fusion module to fully exploit valuable information obtained from concatenating features through channel-wise and spatial-wise relationships. Furthermore, we develop a Channel-Spatial Squeeze-and-Excitation module, a modified network backbone that enhances the representation ability of important channels and correspondences through the squeeze-and-excitation operation. T-Net++ not only preserves the permutation-equivariance manner for correspondence pruning, but also gathers rich contextual information, thereby enhancing the effectiveness of the network. Experimental results demonstrate that T-Net++ outperforms other state-of-the-art correspondence pruning methods on various benchmarks and excels in two extended tasks 
650 4 |a Journal Article 
700 1 |a Liu, Xin  |e verfasserin  |4 aut 
700 1 |a Zhong, Zhen  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaoqin  |e verfasserin  |4 aut 
700 1 |a Ma, Jiayi  |e verfasserin  |4 aut 
700 1 |a Ling, Haibin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 16. Dez., Seite 10629-10644  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:16  |g month:12  |g pages:10629-10644 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3444457  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 16  |c 12  |h 10629-10644