Essential Number of Principal Components and Nearly Training-Free Model for Spectral Analysis
Learning-enabled spectroscopic analysis, promising for automated real-time analysis of chemicals, is facing several challenges. First, a typical machine learning model requires a large number of training samples that physical systems can not provide. Second, it requires the testing samples to be in...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 01. Nov., Seite 9714-9726
|
1. Verfasser: |
Bie, Yifeng
(VerfasserIn) |
Weitere Verfasser: |
You, Shuai,
Li, Xinrui,
Zhang, Xuekui,
Lu, Tao |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article |