Essential Number of Principal Components and Nearly Training-Free Model for Spectral Analysis

Learning-enabled spectroscopic analysis, promising for automated real-time analysis of chemicals, is facing several challenges. First, a typical machine learning model requires a large number of training samples that physical systems can not provide. Second, it requires the testing samples to be in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 01. Nov., Seite 9714-9726
1. Verfasser: Bie, Yifeng (VerfasserIn)
Weitere Verfasser: You, Shuai, Li, Xinrui, Zhang, Xuekui, Lu, Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM375810951
003 DE-627
005 20241108232338.0
007 cr uuu---uuuuu
008 240803s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3436860  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM375810951 
035 |a (NLM)39093672 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bie, Yifeng  |e verfasserin  |4 aut 
245 1 0 |a Essential Number of Principal Components and Nearly Training-Free Model for Spectral Analysis 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Learning-enabled spectroscopic analysis, promising for automated real-time analysis of chemicals, is facing several challenges. First, a typical machine learning model requires a large number of training samples that physical systems can not provide. Second, it requires the testing samples to be in range with the training samples, which often is not the case in the real world. Further, a spectroscopy device is limited by its memory size, computing power, and battery capacity. That requires highly efficient learning models for on-site analysis. In this paper, by analyzing multi-gas mixtures and multi-molecule suspensions, we first show that orders of magnitude reduction of data dimension can be achieved as the number of principal components that need to be retained is the same as the independent constituents in the mixture. From this principle, we designed highly compact models in which the essential principal components can be directly extracted from the interrelations between the individual chemical properties and principal components; and only a few training samples are required. Our model can predict the constituent concentrations that have not been seen in the training dataset and provide estimations of measurement noises. This approach can be extended as an effectively standardized method for principle component extraction 
650 4 |a Journal Article 
700 1 |a You, Shuai  |e verfasserin  |4 aut 
700 1 |a Li, Xinrui  |e verfasserin  |4 aut 
700 1 |a Zhang, Xuekui  |e verfasserin  |4 aut 
700 1 |a Lu, Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 01. Nov., Seite 9714-9726  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:01  |g month:11  |g pages:9714-9726 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3436860  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 01  |c 11  |h 9714-9726