Engineering Bis-Pyridine N-Functionalized Cellulose Aerogel for Efficient Extraction of Cu2+ from High-Acidity Wastewaters : Coupling Molecular Scale Interpretation with Experiment
In order to address the issue of protonation of functional groups and structural instability on the surface of aerogel due to strong acidic wastewater, a three-dimensional bis-pyridine N cellulose aerogel [PEIPD/carboxymethyl cellulose (CMC)] with protonation resistance was prepared in this paper by...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 31 vom: 06. Aug., Seite 16430-16442 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article PEIPD/CMC aerogel acidic wastewater adsorption mechanism chelation density functional theory |
Zusammenfassung: | In order to address the issue of protonation of functional groups and structural instability on the surface of aerogel due to strong acidic wastewater, a three-dimensional bis-pyridine N cellulose aerogel [PEIPD/carboxymethyl cellulose (CMC)] with protonation resistance was prepared in this paper by grafting pyridine onto polyethylenimine. The adsorption capacity for Cu2+ of the as-prepared aerogel is as high as 1.64 mmol/g (pH 5) and is maintained well in high-acidity solutions (1.15 mmol/g at pH = 2). It reveals high selectivity, splendid anti-interference ability, and also reliable on the recycle performance. Through the zeta potential tests, this adsorbent reveals a rather low zero charge point (pHpzc = 2.2). The adsorption of Cu2+ on the adsorbent is consistent with the pseudo-second-order kinetic model and the Langmuir model, suggesting that the adsorption process is dominated by chemisorption in a monolayer. The characterizations by Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy proved pyridine N as responsible binding sites, based on which two possible mechanisms are proposed, including chelation and cation-π interaction. Density functional theory calculations are further used to precisely investigate the pathway. By comparing the binding energies, molecular electrostatic potentials, electron densities, and differential charge densities, the bis-pyridine N functional group is finally determined to be of much higher affinity to Cu2+ following chelation reaction as designated. By integrating bis-pyridine N with the CMC and understanding their crucial roles, this will provide significant insights into the rational design of aerogel adsorbents to enhance the recovery of Cu from strongly acidic wastewaters |
---|---|
Beschreibung: | Date Revised 06.08.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c01755 |