Microplastics in the diet of Hermetia illucens : Implications for development and midgut bacterial and fungal microbiota
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Veröffentlicht in: | Waste management (New York, N.Y.). - 1999. - 186(2024) vom: 15. Juli, Seite 259-270 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Waste management (New York, N.Y.) |
Schlagworte: | Journal Article 16S Bioconversion Black soldier flies DNA-barcoding ITS OFMSU (organic fraction of municipal solid waste) Ultrastructure Microplastics Polyvinyl Chloride |
Zusammenfassung: | Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved. In a world with a population exceeding 8 billion people and continuing to grow, pollution from food and plastic waste is causing long-term issues in ecosystems. Potential solutions may be found by exploiting insect-based bioconversion. In this context, we investigated the impact of polyvinyl chloride microparticles (PVC-MPs) on the development of Hermetia illucens (black soldier fly; BSF) and its midgut bacterial and fungal microbiota. The impact of PVC-MPs was evaluated feeding BSF larvae with a PVC-MPs-supplemented diet. The larvae exposed to different PVC-MPs concentrations (2.5%, 5%, 10% and 20% w/w) developed into adults with no significant increase in pupal mortality. Faster development and smaller pupae were observed when 20% PVC-MPs was provided. The BSF larvae ingest PVC-MPs, resulting in a reduction in MPs size. Larvae exposed to PVC-MPs did not exhibit differences in gut morphology. Regarding the impact of PVC-MPs on the structure of both bacterial and fungal communities, the overall alpha- and beta-diversity did not exhibit significant changes. However, the presence of PVC-MPs significantly affected the relative abundances of Enterobacteriaceae and Paenibacillaceae among the bacteria and of Dipodascaceae and Plectospharellaceae among the fungi (including yeast and filamentous life forms), suggesting that PVC-MP contamination has a taxa-dependent impact. These results indicate that BSF larvae can tolerate PVC-MPs in their diet, supporting the potential use of these insects in organic waste management, even in the presence of high levels of PVC-MP contamination |
---|---|
Beschreibung: | Date Completed 10.07.2024 Date Revised 10.07.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1879-2456 |
DOI: | 10.1016/j.wasman.2024.06.021 |