CPPF++ : Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation

Object pose estimation constitutes a critical area within the domain of 3D vision. While contemporary state-of-the-art methods that leverage real-world pose annotations have demonstrated commendable performance, the procurement of such real training data incurs substantial costs. This paper focuses...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 27. Nov., Seite 9239-9254
1. Verfasser: You, Yang (VerfasserIn)
Weitere Verfasser: He, Wenhao, Liu, Jin, Xiong, Hongkai, Wang, Weiming, Lu, Cewu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM374051801
003 DE-627
005 20241108232239.0
007 cr uuu---uuuuu
008 240626s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3419038  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM374051801 
035 |a (NLM)38917283 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a You, Yang  |e verfasserin  |4 aut 
245 1 0 |a CPPF++  |b Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Object pose estimation constitutes a critical area within the domain of 3D vision. While contemporary state-of-the-art methods that leverage real-world pose annotations have demonstrated commendable performance, the procurement of such real training data incurs substantial costs. This paper focuses on a specific setting wherein only 3D CAD models are utilized as a priori knowledge, devoid of any background or clutter information. We introduce a novel method, CPPF++, designed for sim-to-real category-level pose estimation. This method builds upon the foundational point-pair voting scheme of CPPF, reformulating it through a probabilistic view. To address the challenge posed by vote collision, we propose a novel approach that involves modeling the voting uncertainty by estimating the probabilistic distribution of each point pair within the canonical space. Furthermore, we augment the contextual information provided by each voting unit through the introduction of N-point tuples. To enhance the robustness and accuracy of the model, we incorporate several innovative modules, including noisy pair filtering, online alignment optimization, and a tuple feature ensemble. Alongside these methodological advancements, we introduce a new category-level pose estimation dataset, named DiversePose 300. Empirical evidence demonstrates that our method significantly surpasses previous sim-to-real approaches and achieves comparable or superior performance on novel datasets 
650 4 |a Journal Article 
700 1 |a He, Wenhao  |e verfasserin  |4 aut 
700 1 |a Liu, Jin  |e verfasserin  |4 aut 
700 1 |a Xiong, Hongkai  |e verfasserin  |4 aut 
700 1 |a Wang, Weiming  |e verfasserin  |4 aut 
700 1 |a Lu, Cewu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 27. Nov., Seite 9239-9254  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:27  |g month:11  |g pages:9239-9254 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3419038  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 27  |c 11  |h 9239-9254