High-Entropy Transition Metal Phosphorus Trichalcogenides for Rapid Sodium Ion Diffusion

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 32 vom: 01. Aug., Seite e2405170
1. Verfasser: Huang, Song (VerfasserIn)
Weitere Verfasser: Qiu, Zanlin, Zhong, Jiang, Wu, Shengqiang, Han, Xiaocang, Hu, Wenchao, Han, Ziyi, Cheng, Wing Ni, Luo, Yan, Meng, Yuan, Hu, Zuyang, Zhou, Xuan, Guo, Shaojun, Zhu, Jian, Zhao, Xiaoxu, Li, Cheng Chao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article high‐entropy materials ion diffusion scanning transmission electron microscopy strain engineering transition metal phosphorus trichalcogenides
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
High-entropy strategies are regarded as a powerful means to enhance performance in energy storage fields. The improved properties are invariably ascribed to entropy stabilization or synergistic cocktail effect. Therefore, the manifested properties in such multicomponent materials are usually unpredictable. Elucidating the precise correlations between atomic structures and properties remains a challenge in high-entropy materials (HEMs). Herein, atomic-resolution scanning transmission electron microscopy annular dark field (STEM-ADF) imaging and four dimensions (4D)-STEM are combined to directly visualize atomic-scale structural and electric information in high-entropy FeMnNiVZnPS3. Aperiodic stacking is found in FeMnNiVZnPS3 accompanied by high-density strain soliton boundaries (SSBs). Theoretical calculation suggests that the formation of such structures is attributed to the imbalanced stress of distinct metal-sulfur bonds in FeMnNiVZnPS3. Interestingly, the electric field concentrates along the two sides of SSBs and gradually diminishes toward the two-dimensional (2D) plane to generate a unique electric field gradient, strongly promoting the ion-diffusion rate. Accordingly, high-entropy FeMnNiVZnPS3 demonstrates superior ion-diffusion coefficients of 10-9.7-10-8.3 cm2 s-1 and high-rate performance (311.5 mAh g-1 at 30 A g-1). This work provides an alternative way for the atomic-scale understanding and design of sophisticated HEMs, paving the way for property engineering in multi-component materials
Beschreibung:Date Revised 08.08.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202405170