DeepMulticut : Deep Learning of Multicut Problem for Neuron Segmentation From Electron Microscopy Volume

Superpixel aggregation is a powerful tool for automated neuron segmentation from electron microscopy (EM) volume. However, existing graph partitioning methods for superpixel aggregation still involve two separate stages-model estimation and model solving, and therefore model error is inherent. To ad...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 04. Nov., Seite 8696-8714
1. Verfasser: Li, Zhenchen (VerfasserIn)
Weitere Verfasser: Yang, Xu, Liu, Jiazheng, Hong, Bei, Zhang, Yanchao, Zhai, Hao, Shen, Lijun, Chen, Xi, Liu, Zhiyong, Han, Hua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM373216149
003 DE-627
005 20241108232216.0
007 cr uuu---uuuuu
008 240605s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3409634  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM373216149 
035 |a (NLM)38833401 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zhenchen  |e verfasserin  |4 aut 
245 1 0 |a DeepMulticut  |b Deep Learning of Multicut Problem for Neuron Segmentation From Electron Microscopy Volume 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Superpixel aggregation is a powerful tool for automated neuron segmentation from electron microscopy (EM) volume. However, existing graph partitioning methods for superpixel aggregation still involve two separate stages-model estimation and model solving, and therefore model error is inherent. To address this issue, we integrate the two stages and propose an end-to-end aggregation framework based on deep learning of the minimum cost multicut problem called DeepMulticut. The core challenge lies in differentiating the NP-hard multicut problem, whose constraint number is exponential in the problem size. With this in mind, we resort to relaxing the combinatorial solver-the greedy additive edge contraction (GAEC)-to a continuous Soft-GAEC algorithm, whose limit is shown to be the vanilla GAEC. Such relaxation thus allows the DeepMulticut to integrate edge cost estimators, Edge-CNNs, into a differentiable multicut optimization system and allows a decision-oriented loss to feed decision quality back to the Edge-CNNs for adaptive discriminative feature learning. Hence, the model estimators, Edge-CNNs, can be trained to improve partitioning decisions directly while beyond the NP-hardness. Also, we explain the rationale behind the DeepMulticut framework from the perspective of bi-level optimization. Extensive experiments on three public EM datasets demonstrate the effectiveness of the proposed DeepMulticut 
650 4 |a Journal Article 
700 1 |a Yang, Xu  |e verfasserin  |4 aut 
700 1 |a Liu, Jiazheng  |e verfasserin  |4 aut 
700 1 |a Hong, Bei  |e verfasserin  |4 aut 
700 1 |a Zhang, Yanchao  |e verfasserin  |4 aut 
700 1 |a Zhai, Hao  |e verfasserin  |4 aut 
700 1 |a Shen, Lijun  |e verfasserin  |4 aut 
700 1 |a Chen, Xi  |e verfasserin  |4 aut 
700 1 |a Liu, Zhiyong  |e verfasserin  |4 aut 
700 1 |a Han, Hua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 04. Nov., Seite 8696-8714  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:04  |g month:11  |g pages:8696-8714 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3409634  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 04  |c 11  |h 8696-8714