|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM373216149 |
003 |
DE-627 |
005 |
20241108232216.0 |
007 |
cr uuu---uuuuu |
008 |
240605s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2024.3409634
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1594.xml
|
035 |
|
|
|a (DE-627)NLM373216149
|
035 |
|
|
|a (NLM)38833401
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Zhenchen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a DeepMulticut
|b Deep Learning of Multicut Problem for Neuron Segmentation From Electron Microscopy Volume
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Superpixel aggregation is a powerful tool for automated neuron segmentation from electron microscopy (EM) volume. However, existing graph partitioning methods for superpixel aggregation still involve two separate stages-model estimation and model solving, and therefore model error is inherent. To address this issue, we integrate the two stages and propose an end-to-end aggregation framework based on deep learning of the minimum cost multicut problem called DeepMulticut. The core challenge lies in differentiating the NP-hard multicut problem, whose constraint number is exponential in the problem size. With this in mind, we resort to relaxing the combinatorial solver-the greedy additive edge contraction (GAEC)-to a continuous Soft-GAEC algorithm, whose limit is shown to be the vanilla GAEC. Such relaxation thus allows the DeepMulticut to integrate edge cost estimators, Edge-CNNs, into a differentiable multicut optimization system and allows a decision-oriented loss to feed decision quality back to the Edge-CNNs for adaptive discriminative feature learning. Hence, the model estimators, Edge-CNNs, can be trained to improve partitioning decisions directly while beyond the NP-hardness. Also, we explain the rationale behind the DeepMulticut framework from the perspective of bi-level optimization. Extensive experiments on three public EM datasets demonstrate the effectiveness of the proposed DeepMulticut
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Yang, Xu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Jiazheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hong, Bei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yanchao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhai, Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shen, Lijun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Xi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Zhiyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Hua
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 46(2024), 12 vom: 04. Nov., Seite 8696-8714
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:46
|g year:2024
|g number:12
|g day:04
|g month:11
|g pages:8696-8714
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2024.3409634
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 46
|j 2024
|e 12
|b 04
|c 11
|h 8696-8714
|