Transforming the Stability, Encapsulation, and Sustained Release Properties of Calcium Alginate Beads through Gel-Confined Coacervation

Calcium alginate (Ca2+/alginate) gel beads find use in diverse applications, ranging from drug delivery and tissue engineering to bioprocessing, food formulation, and agriculture. Unless modified, however, these gels have limited stability in alkaline media (including phosphate buffers), and their h...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 23 vom: 11. Juni, Seite 11947-11958
1. Verfasser: Egbeyemi, Oluwadamilola I (VerfasserIn)
Weitere Verfasser: Hatem, Wesam A, Kober, Umberto A, Lapitsky, Yakov
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Alginates Gels Glucuronic Acid 8A5D83Q4RW Hexuronic Acids Polyphosphates Calcium SY7Q814VUP Delayed-Action Preparations
LEADER 01000caa a22002652 4500
001 NLM372957242
003 DE-627
005 20240611232654.0
007 cr uuu---uuuuu
008 240529s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.4c00297  |2 doi 
028 5 2 |a pubmed24n1437.xml 
035 |a (DE-627)NLM372957242 
035 |a (NLM)38807458 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Egbeyemi, Oluwadamilola I  |e verfasserin  |4 aut 
245 1 0 |a Transforming the Stability, Encapsulation, and Sustained Release Properties of Calcium Alginate Beads through Gel-Confined Coacervation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.06.2024 
500 |a Date Revised 11.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Calcium alginate (Ca2+/alginate) gel beads find use in diverse applications, ranging from drug delivery and tissue engineering to bioprocessing, food formulation, and agriculture. Unless modified, however, these gels have limited stability in alkaline media (including phosphate buffers), and their high solute permeability limits their ability to efficiently encapsulate and slowly release water-soluble small molecules. Here, we show how these limitations can be addressed by mixing the alginate solutions used in the bead preparation with the nontoxic anionic polymer polyphosphate (PP). Upon complexing Ca2+ ions, PP undergoes complex coacervation (i.e., liquid/liquid phase separation into a Ca2+/PP-rich coacervate phase and a dilute supernatant phase). At lower PP concentrations, the Ca2+/PP coacervate appears to simply remain dispersed within the beads. Though its presence makes the beads more stable in alkaline media (phosphate-buffered saline and seawater), it has little impact on the bead stiffness, morphology, and (at least in the absence of substantial payload/coacervate association) encapsulation and release properties. When the PP concentrations exceed a critical value, however, Ca2+/PP coacervation within the gelling Ca2+/alginate beads collapses the resulting beads into more compact, interpenetrating polymer networks. Besides their enhanced stability to alkaline environments, these hybrid beads exhibit irregular morphologies with wrinkled and dimpled surface structures and macroscopic (closed) internal pores, and their collapse into these polymer-rich networks also makes them significantly stiffer than their PP-free counterparts. Crucially, these beads also exhibit a much lower solute permeability, which enables highly efficient encapsulation and multiday release of water-soluble small molecules (with the beads encapsulating >90% of the added model payload and sustaining its release over 3-5 d). Collectively, these findings provide a mild and simple (single-step) pathway to generating ionically cross-linked alginate beads with significantly enhanced stability, encapsulation efficiency, and sustained release 
650 4 |a Journal Article 
650 7 |a Alginates  |2 NLM 
650 7 |a Gels  |2 NLM 
650 7 |a Glucuronic Acid  |2 NLM 
650 7 |a 8A5D83Q4RW  |2 NLM 
650 7 |a Hexuronic Acids  |2 NLM 
650 7 |a Polyphosphates  |2 NLM 
650 7 |a Calcium  |2 NLM 
650 7 |a SY7Q814VUP  |2 NLM 
650 7 |a Delayed-Action Preparations  |2 NLM 
700 1 |a Hatem, Wesam A  |e verfasserin  |4 aut 
700 1 |a Kober, Umberto A  |e verfasserin  |4 aut 
700 1 |a Lapitsky, Yakov  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 40(2024), 23 vom: 11. Juni, Seite 11947-11958  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:40  |g year:2024  |g number:23  |g day:11  |g month:06  |g pages:11947-11958 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.4c00297  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 40  |j 2024  |e 23  |b 11  |c 06  |h 11947-11958