A Cable-Stayed Honeycomb Superstructure to Improve the Stability of Li-Rich Materials via Inhibiting Interlaminar Lattice Strain
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 31 vom: 01. Aug., Seite e2404982 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Li/Ni disorder Li‐rich cathode lithium‐ion batteries oxygen redox |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. In layered Li-rich materials, over stoichiometric Li forms an ordered occupation of LiTM6 in transition metal (TM) layer, showing a honeycomb superstructure along [001] direction. At the atomic scale, the instability of the superstructure at high voltage is the root cause of problems such as capacity/voltage decay of Li-rich materials. Here a Li-rich material with a high Li/Ni disorder is reported, these interlayer Ni atoms locate above the honeycomb superstructure and share adjacent O coordination with honeycomb TM. These Ni─O bonds act as cable-stayed bridge to the honeycomb plane, and improve the high-voltage stability. The cable-stayed honeycomb superstructure is confirmed by in situ X-ray diffraction to have a unique cell evolution mechanism that it can alleviate interlaminar lattice strain by promoting in-plane expansion along a-axis and inhibiting c-axis stretching. Electrochemical tests also demonstrate significantly improved long cycle performance after 500 cycles (86% for Li-rich/Li half cell and 82% for Li-rich/Si-C full cell) and reduced irreversible oxygen release. This work proves the feasibility of achieving outstanding stability of lithium-rich materials through superstructure regulation and provides new insights for the development of the next-generation high-energy-density cathodes |
---|---|
Beschreibung: | Date Revised 01.08.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202404982 |