Intranasal Delivery of Near-Infrared and Magnetic Dual-Response Nanospheres to Rapidly Produce Antidepressant-Like and Cognitive Enhancement Effects
© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 31 vom: 31. Aug., Seite e2405547 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article dopamine receptor iron nasal administration receptor upregulation synaptic plasticity Antidepressive Agents Brain-Derived Neurotrophic Factor |
Zusammenfassung: | © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. Restricted by synaptic plasticity, dopamine receptor (DR) upregulation takes a long time to work. Moreover, the impact of the blood-brain barrier (BBB) on delivery efficiency restricts the development of drugs. Taking inspiration from snuff bottles, a convenient, fast-acting, and nonaddictive nasal drug delivery system has been developed to rapidly reshape the balance of synaptic transmitters. This optical and magnetic response system called CFsDP, comprised of carbonized MIL-100 (Fe) frameworks (CFs) and domperidone (DP), which can enter the brain via nasal administration. Under dual stimulation of near-infrared (NIR) irradiation and catecholamine-induced complexation, CFs@DP disintegrates to release iron ions and DP, causing upregulation of the dopamine type 1 (D1), type 2 (D2) receptors, and brain-derived neurotrophic factor (BDNF) to achieve a therapeutic effect. In vivo experiments demonstrate that the DR density of mice (postnatal day 50-60) increased in the prefrontal cortex (PFC) and the hippocampus (HPC) after 10 days of therapy, resulting in antidepressant-like and cognitive enhancement effects. Interestingly, the cognitive enhancement effect of CFs@DP is even working in noniron deficiency (normal fed) mice, making it a promising candidate for application in enhancing learning ability |
---|---|
Beschreibung: | Date Completed 01.08.2024 Date Revised 01.08.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202405547 |