Counter-Doping Effect by Trivalent Cations in Tin-Based Perovskite Solar Cells
© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 30 vom: 21. Juli, Seite e2402947 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Sn‐based perovskite solar cell counter‐doping efficiency trivalent antimony |
Zusammenfassung: | © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. Tin (Sn) -based perovskite solar cells (PSCs) normally show low open circuit voltage due to serious carrier recombination in the devices, which can be attributed to the oxidation and the resultant high p-type doping of the perovskite active layers. Considering the grand challenge to completely prohibit the oxidation of Sn-based perovskites, a feasible way to improve the device performance is to counter-dope the oxidized Sn-based perovskites by replacing Sn2+ with trivalent cations in the crystal lattice, which however is rarely reported. Here, the introduction of Sb3+, which can effectively counter-dope the oxidized perovskite layer and improve the carrier lifetime, is presented. Meanwhile, Sb3+ can passivate deep-level defects and improve carrier mobility of the perovskite layer, which are all favorable for the photovoltaic performance of the devices. Consequently, the target devices yield a relative enhancement of the power conversion efficiency (PCE) of 31.4% as well as excellent shelf-storage stability. This work provides a novel strategy to improve the performance of Sn-based PSCs, which can be developed as a universal way to compensate for the oxidation of Sn-based perovskites in optoelectronic devices |
---|---|
Beschreibung: | Date Revised 25.07.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202402947 |