Rapid Surface Reconstruction of In2S3 Photoanode via Flame Treatment for Enhanced Photoelectrochemical Performance

© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 08. Mai, Seite e2403164
1. Verfasser: Jeong, Yoo Jae (VerfasserIn)
Weitere Verfasser: Tan, Runfa, Nam, Seongsik, Lee, Jong Ho, Kim, Sung Kyu, Lee, Tae Gyu, Shin, Seong Sik, Zheng, Xiaolin, Cho, In Sun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article In2S3 photoanode flame treatment photoelectrochemical performance stability surface reconstruction
Beschreibung
Zusammenfassung:© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
Surface reconstruction, reorganizing the surface atoms or structure, is a promising strategy to manipulate materials' electrical, electrochemical, and surface catalytic properties. Herein, a rapid surface reconstruction of indium sulfide (In2S3) is demonstrated via a high-temperature flame treatment to improve its charge collection properties. The flame process selectively transforms the In2S3 surface into a diffusionless In2O3 layer with high crystallinity. Additionally, it controllably generates bulk sulfur vacancies within a few seconds, leading to surface-reconstructed In2S3 (sr-In2S3). When using those sr-In2S3 as photoanode for photoelectrochemical water splitting devices, these dual functions of surface In2O3/bulk In2S3 reduce the charge recombination in the surface and bulk region, thus improving photocurrent density and stability. With optimized surface reconstruction, the sr-In2S3 photoanode demonstrates a significant photocurrent density of 8.5 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (RHE), marking a 2.5-fold increase compared to pristine In2S3 (3.5 mA cm-2). More importantly, the sr-In2S3 photoanode exhibits an impressive photocurrent density of 7.3 mA cm-2 at 0.6 V versus RHE for iodide oxidation reaction. A practical and scalable surface reconstruction is also showcased via flame treatment. This work provides new insights for surface reconstruction engineering in sulfide-based semiconductors, making a breakthrough in developing efficient solar-fuel energy devices
Beschreibung:Date Revised 30.05.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202403164