Hidden Real Topology and Unusual Magnetoelectric Responses in Two-Dimensional Antiferromagnets

© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 29 vom: 14. Juli, Seite e2402232
1. Verfasser: Gong, Jialin (VerfasserIn)
Weitere Verfasser: Wang, Yang, Han, Yilin, Cheng, Zhenxiang, Wang, Xiaotian, Yu, Zhi-Ming, Yao, Yugui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article antiferromagnets hidden real topology spin–corner coupling two dimensions unusual magnetoelectric responses
Beschreibung
Zusammenfassung:© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
Recently, the real topology has been attracting widespread interest in two dimensions (2D). Here, based on first-principles calculations and theoretical analysis, the monolayer Cr2Se2O (ML-CrSeO) is revealed as the first material example of a 2D antiferromagnetic (AFM) real Chern insulator (RCI) with topologically protected corner states. Unlike previous RCIs, it is found that the real topology of the ML-CrSeO is rooted in one certain mirror subsystem of the two spin channels, and cannot be directly obtained from all the valence bands in each spin channel as commonly believed. In particular, due to antiferromagnetism, the corner modes in ML-CrSeO exhibit strong corner-contrasted spin polarization, leading to spin-corner coupling (SCC). This SCC enables a direct connection between spin space and real space. Consequently, large and switchable net magnetization can be induced in the ML-CrSeO nanodisk by electrostatic means, such as potential step and in-plane electric field, and the corresponding magnetoelectric responses behave like a sign function, distinguished from that of the conventional multiferroic materials. This work considerably broadens the candidate range of RCI materials, and opens up a new direction for topo-spintronics and 2D AFM materials research
Beschreibung:Date Revised 18.07.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202402232