Bridging Actions : Generate 3D Poses and Shapes In-Between Photos

Generating realistic 3D human motion has been a fundamental goal of the game/animation industry. This work presents a novel transition generation technique that can bridge the actions of people in the foreground by generating 3D poses and shapes in-between photos, allowing 3D animators/novice users...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 11 vom: 12. Nov., Seite 7232-7250
Auteur principal: Wei, Wen-Li (Auteur)
Autres auteurs: Lin, Jen-Chun
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM370970209
003 DE-627
005 20250306015905.0
007 cr uuu---uuuuu
008 240413s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3388042  |2 doi 
028 5 2 |a pubmed25n1235.xml 
035 |a (DE-627)NLM370970209 
035 |a (NLM)38607712 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Wen-Li  |e verfasserin  |4 aut 
245 1 0 |a Bridging Actions  |b Generate 3D Poses and Shapes In-Between Photos 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Generating realistic 3D human motion has been a fundamental goal of the game/animation industry. This work presents a novel transition generation technique that can bridge the actions of people in the foreground by generating 3D poses and shapes in-between photos, allowing 3D animators/novice users to easily create/edit 3D motions. To achieve this, we propose an adaptive motion network (ADAM-Net) that effectively learns human motion from masked action sequences to generate kinematically compliant 3D poses and shapes in-between given temporally-sparse photos. Three core learning designs underpin ADAM-Net. First, we introduce a random masking process that randomly masks images from an action sequence and fills masked regions in latent space by interpolation of unmasked images to simulate various transitions under given temporally-sparse photos. Second, we propose a long-range adaptive motion (L-ADAM) attention module that leverages visual cues observed from human motion to adaptively recalibrate the range that needs attention in a sequence, along with a multi-head cross-attention. Third, we develop a short-range adaptive motion (S-ADAM) attention module that weightedly selects and integrates adjacent feature representations at different levels to strengthen temporal correlation. By coupling these designs, the results demonstrate that ADAM-Net excels not only in generating 3D poses and shapes in-between photos, but also in classic 3D human pose and shape estimation 
650 4 |a Journal Article 
700 1 |a Lin, Jen-Chun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 11 vom: 12. Nov., Seite 7232-7250  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:11  |g day:12  |g month:11  |g pages:7232-7250 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3388042  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 11  |b 12  |c 11  |h 7232-7250