Nonconvex Robust High-Order Tensor Completion Using Randomized Low-Rank Approximation

Within the tensor singular value decomposition (T-SVD) framework, existing robust low-rank tensor completion approaches have made great achievements in various areas of science and engineering. Nevertheless, these methods involve the T-SVD based low-rank approximation, which suffers from high comput...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 2835-2850
Auteur principal: Qin, Wenjin (Auteur)
Autres auteurs: Wang, Hailin, Zhang, Feng, Ma, Weijun, Wang, Jianjun, Huang, Tingwen
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article