Nonconvex Robust High-Order Tensor Completion Using Randomized Low-Rank Approximation
Within the tensor singular value decomposition (T-SVD) framework, existing robust low-rank tensor completion approaches have made great achievements in various areas of science and engineering. Nevertheless, these methods involve the T-SVD based low-rank approximation, which suffers from high comput...
Description complète
Détails bibliographiques
| Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 2835-2850
|
| Auteur principal: |
Qin, Wenjin
(Auteur) |
| Autres auteurs: |
Wang, Hailin,
Zhang, Feng,
Ma, Weijun,
Wang, Jianjun,
Huang, Tingwen |
| Format: | Article en ligne
|
| Langue: | English |
| Publié: |
2024
|
| Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
| Sujets: | Journal Article |