Nonconvex Robust High-Order Tensor Completion Using Randomized Low-Rank Approximation
Within the tensor singular value decomposition (T-SVD) framework, existing robust low-rank tensor completion approaches have made great achievements in various areas of science and engineering. Nevertheless, these methods involve the T-SVD based low-rank approximation, which suffers from high comput...
Ausführliche Beschreibung
Bibliographische Detailangaben
| Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 2835-2850
|
| 1. Verfasser: |
Qin, Wenjin
(VerfasserIn) |
| Weitere Verfasser: |
Wang, Hailin,
Zhang, Feng,
Ma, Weijun,
Wang, Jianjun,
Huang, Tingwen |
| Format: | Online-Aufsatz
|
| Sprache: | English |
| Veröffentlicht: |
2024
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
| Schlagworte: | Journal Article |