Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge

© Valentin Munteanu et al. 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 57(2024), Pt 2 vom: 01. Apr., Seite 456-469
1. Verfasser: Munteanu, Valentin (VerfasserIn)
Weitere Verfasser: Starostin, Vladimir, Greco, Alessandro, Pithan, Linus, Gerlach, Alexander, Hinderhofer, Alexander, Kowarik, Stefan, Schreiber, Frank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article inverse problems machine learning reflectometry soft matter
LEADER 01000caa a22002652c 4500
001 NLM370860705
003 DE-627
005 20250306014208.0
007 cr uuu---uuuuu
008 240410s2024 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576724002115  |2 doi 
028 5 2 |a pubmed25n1235.xml 
035 |a (DE-627)NLM370860705 
035 |a (NLM)38596736 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Munteanu, Valentin  |e verfasserin  |4 aut 
245 1 0 |a Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.04.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Valentin Munteanu et al. 2024. 
520 |a Due to the ambiguity related to the lack of phase information, determining the physical parameters of multilayer thin films from measured neutron and X-ray reflectivity curves is, on a fundamental level, an underdetermined inverse problem. This ambiguity poses limitations on standard neural networks, constraining the range and number of considered parameters in previous machine learning solutions. To overcome this challenge, a novel training procedure has been designed which incorporates dynamic prior boundaries for each physical parameter as additional inputs to the neural network. In this manner, the neural network can be trained simultaneously on all well-posed subintervals of a larger parameter space in which the inverse problem is underdetermined. During inference, users can flexibly input their own prior knowledge about the physical system to constrain the neural network prediction to distinct target subintervals in the parameter space. The effectiveness of the method is demonstrated in various scenarios, including multilayer structures with a box model parameterization and a physics-inspired special parameterization of the scattering length density profile for a multilayer structure. In contrast to previous methods, this approach scales favourably when increasing the complexity of the inverse problem, working properly even for a five-layer multilayer model and a periodic multilayer model with up to 17 open parameters 
650 4 |a Journal Article 
650 4 |a inverse problems 
650 4 |a machine learning 
650 4 |a reflectometry 
650 4 |a soft matter 
700 1 |a Starostin, Vladimir  |e verfasserin  |4 aut 
700 1 |a Greco, Alessandro  |e verfasserin  |4 aut 
700 1 |a Pithan, Linus  |e verfasserin  |4 aut 
700 1 |a Gerlach, Alexander  |e verfasserin  |4 aut 
700 1 |a Hinderhofer, Alexander  |e verfasserin  |4 aut 
700 1 |a Kowarik, Stefan  |e verfasserin  |4 aut 
700 1 |a Schreiber, Frank  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 57(2024), Pt 2 vom: 01. Apr., Seite 456-469  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnas 
773 1 8 |g volume:57  |g year:2024  |g number:Pt 2  |g day:01  |g month:04  |g pages:456-469 
856 4 0 |u http://dx.doi.org/10.1107/S1600576724002115  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2024  |e Pt 2  |b 01  |c 04  |h 456-469