Millisecond X-ray reflectometry and neural network analysis : unveiling fast processes in spin coating

© David Schumi-Mareček et al. 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 57(2024), Pt 2 vom: 01. Apr., Seite 314-323
1. Verfasser: Schumi-Mareček, David (VerfasserIn)
Weitere Verfasser: Bertram, Florian, Mikulík, Petr, Varshney, Devanshu, Novák, Jiří, Kowarik, Stefan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article X-ray reflectometry millisecond XRR neural network analysis spin coating
LEADER 01000caa a22002652 4500
001 NLM370860624
003 DE-627
005 20240411233000.0
007 cr uuu---uuuuu
008 240410s2024 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576724001171  |2 doi 
028 5 2 |a pubmed24n1372.xml 
035 |a (DE-627)NLM370860624 
035 |a (NLM)38596729 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Schumi-Mareček, David  |e verfasserin  |4 aut 
245 1 0 |a Millisecond X-ray reflectometry and neural network analysis  |b unveiling fast processes in spin coating 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.04.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © David Schumi-Mareček et al. 2024. 
520 |a X-ray reflectometry (XRR) is a powerful tool for probing the structural characteristics of nanoscale films and layered structures, which is an important field of nanotechnology and is often used in semiconductor and optics manufacturing. This study introduces a novel approach for conducting quantitative high-resolution millisecond monochromatic XRR measurements. This is an order of magnitude faster than in previously published work. Quick XRR (qXRR) enables real time and in situ monitoring of nanoscale processes such as thin film formation during spin coating. A record qXRR acquisition time of 1.4 ms is demonstrated for a static gold thin film on a silicon sample. As a second example of this novel approach, dynamic in situ measurements are performed during PMMA spin coating onto silicon wafers and fast fitting of XRR curves using machine learning is demonstrated. This investigation primarily focuses on the evolution of film structure and surface morphology, resolving for the first time with qXRR the initial film thinning via mass transport and also shedding light on later thinning via solvent evaporation. This innovative millisecond qXRR technique is of significance for in situ studies of thin film deposition. It addresses the challenge of following intrinsically fast processes, such as thin film growth of high deposition rate or spin coating. Beyond thin film growth processes, millisecond XRR has implications for resolving fast structural changes such as photostriction or diffusion processes 
650 4 |a Journal Article 
650 4 |a X-ray reflectometry 
650 4 |a millisecond XRR 
650 4 |a neural network analysis 
650 4 |a spin coating 
700 1 |a Bertram, Florian  |e verfasserin  |4 aut 
700 1 |a Mikulík, Petr  |e verfasserin  |4 aut 
700 1 |a Varshney, Devanshu  |e verfasserin  |4 aut 
700 1 |a Novák, Jiří  |e verfasserin  |4 aut 
700 1 |a Kowarik, Stefan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 57(2024), Pt 2 vom: 01. Apr., Seite 314-323  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:57  |g year:2024  |g number:Pt 2  |g day:01  |g month:04  |g pages:314-323 
856 4 0 |u http://dx.doi.org/10.1107/S1600576724001171  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2024  |e Pt 2  |b 01  |c 04  |h 314-323