Generalizing to Out-of-Sample Degradations via Model Reprogramming

Existing image restoration models are typically designed for specific tasks and struggle to generalize to out-of-sample degradations not encountered during training. While zero-shot methods can address this limitation by fine-tuning model parameters on testing samples, their effectiveness relies on...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 05., Seite 2783-2794
Auteur principal: Jiang, Runhua (Auteur)
Autres auteurs: Han, Yahong
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM37068270X
003 DE-627
005 20250306011448.0
007 cr uuu---uuuuu
008 240406s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3378181  |2 doi 
028 5 2 |a pubmed25n1235.xml 
035 |a (DE-627)NLM37068270X 
035 |a (NLM)38578860 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Runhua  |e verfasserin  |4 aut 
245 1 0 |a Generalizing to Out-of-Sample Degradations via Model Reprogramming 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing image restoration models are typically designed for specific tasks and struggle to generalize to out-of-sample degradations not encountered during training. While zero-shot methods can address this limitation by fine-tuning model parameters on testing samples, their effectiveness relies on predefined natural priors and physical models of specific degradations. Nevertheless, determining out-of-sample degradations faced in real-world scenarios is always impractical. As a result, it is more desirable to train restoration models with inherent generalization ability. To this end, this work introduces the Out-of-Sample Restoration (OSR) task, which aims to develop restoration models capable of handling out-of-sample degradations. An intuitive solution involves pre-translating out-of-sample degradations to known degradations of restoration models. However, directly translating them in the image space could lead to complex image translation issues. To address this issue, we propose a model reprogramming framework, which translates out-of-sample degradations by quantum mechanic and wave functions. Specifically, input images are decoupled as wave functions of amplitude and phase terms. The translation of out-of-sample degradation is performed by adapting the phase term. Meanwhile, the image content is maintained and enhanced in the amplitude term. By taking these two terms as inputs, restoration models are able to handle out-of-sample degradations without fine-tuning. Through extensive experiments across multiple evaluation cases, we demonstrate the effectiveness and flexibility of our proposed framework. Our codes are available at https://github.com/ddghjikle/Out-of-sample-restoration 
650 4 |a Journal Article 
700 1 |a Han, Yahong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 05., Seite 2783-2794  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:05  |g pages:2783-2794 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3378181  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 05  |h 2783-2794