Generalizing to Out-of-Sample Degradations via Model Reprogramming

Existing image restoration models are typically designed for specific tasks and struggle to generalize to out-of-sample degradations not encountered during training. While zero-shot methods can address this limitation by fine-tuning model parameters on testing samples, their effectiveness relies on...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 05., Seite 2783-2794
Auteur principal: Jiang, Runhua (Auteur)
Autres auteurs: Han, Yahong
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article