Biomass Solid-State Electrolyte with Abundant Ion and Water Channels for Flexible Zinc-Air Batteries
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 29 vom: 23. Juli, Seite e2401858 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article cellulose nanofibers flexible zinc–air batteries ion channels solid‐state electrolytes water channels |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Flexible zinc-air batteries are the leading candidates as the next-generation power source for flexible/wearable electronics. However, constructing safe and high-performance solid-state electrolytes (SSEs) with intrinsic hydroxide ion (OH-) conduction remains a fundamental challenge. Herein, by adopting the natural and robust cellulose nanofibers (CNFs) as building blocks, the biomass SSEs with penetrating ion and water channels are constructed by knitting the OH--conductive CNFs and water-retentive CNFs together via an energy-efficient tape casting. Benefiting from the abundant ion and water channels with interconnected hydrated OH- wires for fast OH- conduction under a nanoconfined environment, the biomass SSEs reveal the high water-uptake, impressive OH- conductivity of 175 mS cm-1 and mechanical robustness simultaneously, which overcomes the commonly existed dilemma between ion conductivity and mechanical property. Remarkably, the flexible zinc-air batteries assemble with biomass SSEs deliver an exceptional cycle lifespan of 310 h and power density of 126 mW cm-2. The design methodology for water and ion channels opens a new avenue to design high-performance SSEs for batteries |
---|---|
Beschreibung: | Date Revised 18.07.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202401858 |