|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM370413563 |
003 |
DE-627 |
005 |
20240331002352.0 |
007 |
cr uuu---uuuuu |
008 |
240331s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TVCG.2024.3383089
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1357.xml
|
035 |
|
|
|a (DE-627)NLM370413563
|
035 |
|
|
|a (NLM)38551829
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Qing
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Chart2Vec
|b A Universal Embedding of Context-Aware Visualizations
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 29.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a The advances in AI-enabled techniques have accelerated the creation and automation of visualizations in the past decade. However, presenting visualizations in a descriptive and generative format remains a challenge. Moreover, current visualization embedding methods focus on standalone visualizations, neglecting the importance of contextual information for multi-view visualizations. To address this issue, we propose a new representation model, Chart2Vec, to learn a universal embedding of visualizations with context-aware information. Chart2Vec aims to support a wide range of downstream visualization tasks such as recommendation and storytelling. Our model considers both structural and semantic information of visualizations in declarative specifications. To enhance the context-aware capability, Chart2Vec employs multi-task learning on both supervised and unsupervised tasks concerning the cooccurrence of visualizations. We evaluate our method through an ablation study, a user study, and a quantitative comparison. The results verified the consistency of our embedding method with human cognition and showed its advantages over existing methods
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Chen, Ying
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zou, Ruishi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shuai, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Jiazhe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Nan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g PP(2024) vom: 29. März
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnns
|
773 |
1 |
8 |
|g volume:PP
|g year:2024
|g day:29
|g month:03
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2024.3383089
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d PP
|j 2024
|b 29
|c 03
|