Chart2Vec : A Universal Embedding of Context-Aware Visualizations

The advances in AI-enabled techniques have accelerated the creation and automation of visualizations in the past decade. However, presenting visualizations in a descriptive and generative format remains a challenge. Moreover, current visualization embedding methods focus on standalone visualizations...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 29. März
1. Verfasser: Chen, Qing (VerfasserIn)
Weitere Verfasser: Chen, Ying, Zou, Ruishi, Shuai, Wei, Guo, Yi, Wang, Jiazhe, Cao, Nan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM370413563
003 DE-627
005 20240331002352.0
007 cr uuu---uuuuu
008 240331s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3383089  |2 doi 
028 5 2 |a pubmed24n1357.xml 
035 |a (DE-627)NLM370413563 
035 |a (NLM)38551829 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Qing  |e verfasserin  |4 aut 
245 1 0 |a Chart2Vec  |b A Universal Embedding of Context-Aware Visualizations 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The advances in AI-enabled techniques have accelerated the creation and automation of visualizations in the past decade. However, presenting visualizations in a descriptive and generative format remains a challenge. Moreover, current visualization embedding methods focus on standalone visualizations, neglecting the importance of contextual information for multi-view visualizations. To address this issue, we propose a new representation model, Chart2Vec, to learn a universal embedding of visualizations with context-aware information. Chart2Vec aims to support a wide range of downstream visualization tasks such as recommendation and storytelling. Our model considers both structural and semantic information of visualizations in declarative specifications. To enhance the context-aware capability, Chart2Vec employs multi-task learning on both supervised and unsupervised tasks concerning the cooccurrence of visualizations. We evaluate our method through an ablation study, a user study, and a quantitative comparison. The results verified the consistency of our embedding method with human cognition and showed its advantages over existing methods 
650 4 |a Journal Article 
700 1 |a Chen, Ying  |e verfasserin  |4 aut 
700 1 |a Zou, Ruishi  |e verfasserin  |4 aut 
700 1 |a Shuai, Wei  |e verfasserin  |4 aut 
700 1 |a Guo, Yi  |e verfasserin  |4 aut 
700 1 |a Wang, Jiazhe  |e verfasserin  |4 aut 
700 1 |a Cao, Nan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 29. März  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:29  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3383089  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 29  |c 03