Chart2Vec : A Universal Embedding of Context-Aware Visualizations

The advances in AI-enabled techniques have accelerated the creation and automation of visualizations in the past decade. However, presenting visualizations in a descriptive and generative format remains a challenge. Moreover, current visualization embedding methods focus on standalone visualizations...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 29. März
1. Verfasser: Chen, Qing (VerfasserIn)
Weitere Verfasser: Chen, Ying, Zou, Ruishi, Shuai, Wei, Guo, Yi, Wang, Jiazhe, Cao, Nan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The advances in AI-enabled techniques have accelerated the creation and automation of visualizations in the past decade. However, presenting visualizations in a descriptive and generative format remains a challenge. Moreover, current visualization embedding methods focus on standalone visualizations, neglecting the importance of contextual information for multi-view visualizations. To address this issue, we propose a new representation model, Chart2Vec, to learn a universal embedding of visualizations with context-aware information. Chart2Vec aims to support a wide range of downstream visualization tasks such as recommendation and storytelling. Our model considers both structural and semantic information of visualizations in declarative specifications. To enhance the context-aware capability, Chart2Vec employs multi-task learning on both supervised and unsupervised tasks concerning the cooccurrence of visualizations. We evaluate our method through an ablation study, a user study, and a quantitative comparison. The results verified the consistency of our embedding method with human cognition and showed its advantages over existing methods
Beschreibung:Date Revised 29.03.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0506
DOI:10.1109/TVCG.2024.3383089