Alternative statistical modeling for radical prostatectomy data

© 2023 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 5 vom: 18., Seite 1007-1022
1. Verfasser: Vasconcelos, Julio C S (VerfasserIn)
Weitere Verfasser: Travassos, Thiago da Costa, Ortega, Edwin M M, Cordeiro, Gauss M, Oliveira Reis, Leonardo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62-08 62-11 62P10 Cubic smoothing splines Marshall-Olkin family local anesthetic prostate cancer quantile residuals
LEADER 01000caa a22002652 4500
001 NLM370143671
003 DE-627
005 20240721232216.0
007 cr uuu---uuuuu
008 240326s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2023.2229973  |2 doi 
028 5 2 |a pubmed24n1477.xml 
035 |a (DE-627)NLM370143671 
035 |a (NLM)38524792 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vasconcelos, Julio C S  |e verfasserin  |4 aut 
245 1 0 |a Alternative statistical modeling for radical prostatectomy data 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.07.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Several statistical models have been proposed in recent years, among them is the semiparametric regression. In medicine, there are several situations in which it is impracticable to consider a linear regression for statistical modeling, especially when the data contain explanatory variables that present a nonlinear relationship with the response variable. Another common situation is when the response variable does not have a unimodal shape, and it is not possible to adopt distributions belonging to the symmetric or asymmetric classes. In this context, a semiparametric heteroskedastic regression is proposed based on an extension of the normal distribution. Then, we show the usefulness of this model to analyze the cost of prostate cancer surgery. The predictor variables refer to two groups of patients such that one group receives a multimodal local anesthetic solution (Preemptive Target Anesthetic Solution) and the second group is treated with neuraxial blockade (spinal anesthesia/traditional standard). The other relevant predictor variables are also evaluated, thus allowing for the in-depth interpretation of the predictor variables with a nonlinear effect on the dependent variable cost. The penalized maximum likelihood method is adopted to estimate the model parameters. The new regression is a useful statistical tool for analyzing medical data 
650 4 |a Journal Article 
650 4 |a 62-08 
650 4 |a 62-11 
650 4 |a 62P10 
650 4 |a Cubic smoothing splines 
650 4 |a Marshall-Olkin family 
650 4 |a local anesthetic 
650 4 |a prostate cancer 
650 4 |a quantile residuals 
700 1 |a Travassos, Thiago da Costa  |e verfasserin  |4 aut 
700 1 |a Ortega, Edwin M M  |e verfasserin  |4 aut 
700 1 |a Cordeiro, Gauss M  |e verfasserin  |4 aut 
700 1 |a Oliveira Reis, Leonardo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 5 vom: 18., Seite 1007-1022  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:5  |g day:18  |g pages:1007-1022 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2023.2229973  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 5  |b 18  |h 1007-1022