Alternative statistical modeling for radical prostatectomy data

© 2023 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 5 vom: 18., Seite 1007-1022
1. Verfasser: Vasconcelos, Julio C S (VerfasserIn)
Weitere Verfasser: Travassos, Thiago da Costa, Ortega, Edwin M M, Cordeiro, Gauss M, Oliveira Reis, Leonardo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62-08 62-11 62P10 Cubic smoothing splines Marshall-Olkin family local anesthetic prostate cancer quantile residuals
Beschreibung
Zusammenfassung:© 2023 Informa UK Limited, trading as Taylor & Francis Group.
Several statistical models have been proposed in recent years, among them is the semiparametric regression. In medicine, there are several situations in which it is impracticable to consider a linear regression for statistical modeling, especially when the data contain explanatory variables that present a nonlinear relationship with the response variable. Another common situation is when the response variable does not have a unimodal shape, and it is not possible to adopt distributions belonging to the symmetric or asymmetric classes. In this context, a semiparametric heteroskedastic regression is proposed based on an extension of the normal distribution. Then, we show the usefulness of this model to analyze the cost of prostate cancer surgery. The predictor variables refer to two groups of patients such that one group receives a multimodal local anesthetic solution (Preemptive Target Anesthetic Solution) and the second group is treated with neuraxial blockade (spinal anesthesia/traditional standard). The other relevant predictor variables are also evaluated, thus allowing for the in-depth interpretation of the predictor variables with a nonlinear effect on the dependent variable cost. The penalized maximum likelihood method is adopted to estimate the model parameters. The new regression is a useful statistical tool for analyzing medical data
Beschreibung:Date Revised 21.07.2024
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763
DOI:10.1080/02664763.2023.2229973