Scalable Optimal Transport Methods in Machine Learning : A Contemporary Survey

Optimal Transport (OT) is a mathematical framework that first emerged in the eighteenth century and has led to a plethora of methods for answering many theoretical and applied questions. The last decade has been a witness to the remarkable contributions of this classical optimization problem to mach...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 20. März
Auteur principal: Khamis, Abdelwahed (Auteur)
Autres auteurs: Tsuchida, Russell, Tarek, Mohamed, Rolland, Vivien, Petersson, Lars
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM369969901
003 DE-627
005 20250305232047.0
007 cr uuu---uuuuu
008 240322s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3379571  |2 doi 
028 5 2 |a pubmed25n1232.xml 
035 |a (DE-627)NLM369969901 
035 |a (NLM)38507387 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Khamis, Abdelwahed  |e verfasserin  |4 aut 
245 1 0 |a Scalable Optimal Transport Methods in Machine Learning  |b A Contemporary Survey 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Optimal Transport (OT) is a mathematical framework that first emerged in the eighteenth century and has led to a plethora of methods for answering many theoretical and applied questions. The last decade has been a witness to the remarkable contributions of this classical optimization problem to machine learning. This paper is about where and how optimal transport is used in machine learning with a focus on the question of scalable optimal transport. We provide a comprehensive survey of optimal transport while ensuring an accessible presentation as permitted by the nature of the topic and the context. First, we explain the optimal transport background and introduce different flavors (i.e. mathematical formulations), properties, and notable applications. We then address the fundamental question of how to scale optimal transport to cope with the current demands of big and high dimensional data. We conduct a systematic analysis of the methods used in the literature for scaling OT and present the findings in a unified taxonomy. We conclude with presenting some open challenges and discussing potential future research directions. A live repository of related OT research papers is maintained in https://github.com/abdelwahed/OT_for_big_data.git 
650 4 |a Journal Article 
700 1 |a Tsuchida, Russell  |e verfasserin  |4 aut 
700 1 |a Tarek, Mohamed  |e verfasserin  |4 aut 
700 1 |a Rolland, Vivien  |e verfasserin  |4 aut 
700 1 |a Petersson, Lars  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 20. März  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2024  |g day:20  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3379571  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 20  |c 03