EGCN++ : A New Fusion Strategy for Ensemble Learning in Skeleton-Based Rehabilitation Exercise Assessment

Skeleton-based exercise assessment focuses on evaluating the correctness or quality of an exercise performed by a subject. Skeleton data provide two groups of features (i.e., position and orientation), which existing methods have not fully harnessed. We previously proposed an ensemble-based graph co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 9 vom: 19. Aug., Seite 6471-6485
1. Verfasser: Yu, Bruce X B (VerfasserIn)
Weitere Verfasser: Liu, Yan, Chan, Keith C C, Chen, Chang Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369922727
003 DE-627
005 20240807232509.0
007 cr uuu---uuuuu
008 240320s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3378753  |2 doi 
028 5 2 |a pubmed24n1494.xml 
035 |a (DE-627)NLM369922727 
035 |a (NLM)38502632 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Bruce X B  |e verfasserin  |4 aut 
245 1 0 |a EGCN++  |b A New Fusion Strategy for Ensemble Learning in Skeleton-Based Rehabilitation Exercise Assessment 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.08.2024 
500 |a Date Revised 07.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Skeleton-based exercise assessment focuses on evaluating the correctness or quality of an exercise performed by a subject. Skeleton data provide two groups of features (i.e., position and orientation), which existing methods have not fully harnessed. We previously proposed an ensemble-based graph convolutional network (EGCN) that considers both position and orientation features to construct a model-based approach. Integrating these types of features achieved better performance than available methods. However, EGCN lacked a fusion strategy across the data, feature, decision, and model levels. In this paper, we present an advanced framework, EGCN++, for rehabilitation exercise assessment. Based on EGCN, a new fusion strategy called MLE-PO is proposed for EGCN++; this technique considers fusion at the data and model levels. We conduct extensive cross-validation experiments and investigate the consistency between machine and human evaluations on three datasets: UI-PRMD, KIMORE, and EHE. Results demonstrate that MLE-PO outperforms other EGCN ensemble strategies and representative baselines. Furthermore, the MLE-PO's model evaluation scores are more quantitatively consistent with clinical evaluations than other ensemble strategies 
650 4 |a Journal Article 
700 1 |a Liu, Yan  |e verfasserin  |4 aut 
700 1 |a Chan, Keith C C  |e verfasserin  |4 aut 
700 1 |a Chen, Chang Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 9 vom: 19. Aug., Seite 6471-6485  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:9  |g day:19  |g month:08  |g pages:6471-6485 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3378753  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 9  |b 19  |c 08  |h 6471-6485