EGCN++ : A New Fusion Strategy for Ensemble Learning in Skeleton-Based Rehabilitation Exercise Assessment
Skeleton-based exercise assessment focuses on evaluating the correctness or quality of an exercise performed by a subject. Skeleton data provide two groups of features (i.e., position and orientation), which existing methods have not fully harnessed. We previously proposed an ensemble-based graph co...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 9 vom: 19. Aug., Seite 6471-6485 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | Skeleton-based exercise assessment focuses on evaluating the correctness or quality of an exercise performed by a subject. Skeleton data provide two groups of features (i.e., position and orientation), which existing methods have not fully harnessed. We previously proposed an ensemble-based graph convolutional network (EGCN) that considers both position and orientation features to construct a model-based approach. Integrating these types of features achieved better performance than available methods. However, EGCN lacked a fusion strategy across the data, feature, decision, and model levels. In this paper, we present an advanced framework, EGCN++, for rehabilitation exercise assessment. Based on EGCN, a new fusion strategy called MLE-PO is proposed for EGCN++; this technique considers fusion at the data and model levels. We conduct extensive cross-validation experiments and investigate the consistency between machine and human evaluations on three datasets: UI-PRMD, KIMORE, and EHE. Results demonstrate that MLE-PO outperforms other EGCN ensemble strategies and representative baselines. Furthermore, the MLE-PO's model evaluation scores are more quantitatively consistent with clinical evaluations than other ensemble strategies |
---|---|
Beschreibung: | Date Completed 06.08.2024 Date Revised 07.08.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2024.3378753 |