A Transformative Topological Representation for Link Modeling, Prediction and Cross-Domain Network Analysis

Many complex social, biological, or physical systems are characterized as networks, and recovering the missing links of a network could shed important lights on its structure and dynamics. A good topological representation is crucial to accurate link modeling and prediction, yet how to account for t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 9 vom: 01. Aug., Seite 6126-6138
1. Verfasser: Zhang, Kai (VerfasserIn)
Weitere Verfasser: Shen, Junchen, He, Gaoqi, Sun, Yu, Ling, Haibin, Zha, Hongyuan, Li, Honglin, Zhang, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369922646
003 DE-627
005 20240808232806.0
007 cr uuu---uuuuu
008 240320s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3378729  |2 doi 
028 5 2 |a pubmed24n1495.xml 
035 |a (DE-627)NLM369922646 
035 |a (NLM)38502624 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Kai  |e verfasserin  |4 aut 
245 1 2 |a A Transformative Topological Representation for Link Modeling, Prediction and Cross-Domain Network Analysis 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many complex social, biological, or physical systems are characterized as networks, and recovering the missing links of a network could shed important lights on its structure and dynamics. A good topological representation is crucial to accurate link modeling and prediction, yet how to account for the kaleidoscopic changes in link formation patterns remains a challenge, especially for analysis in cross-domain studies. We propose a new link representation scheme by projecting the local environment of a link into a "dipole plane", where neighboring nodes of the link are positioned via their relative proximity to the two anchors of the link, like a dipole. By doing this, complex and discrete topology arising from link formation is turned to differentiable point-cloud distribution, opening up new possibilities for topological feature-engineering with desired expressiveness, interpretability and generalization. Our approach has comparable or even superior results against state-of-the-art GNNs, meanwhile with a model up to hundreds of times smaller and running much faster. Furthermore, it provides a universal platform to systematically profile, study, and compare link-patterns from miscellaneous real-world networks. This allows building a global link-pattern atlas, based on which we have uncovered interesting common patterns of link formation, i.e., the bridge-style, the radiation-style, and the community-style across a wide collection of networks with highly different nature 
650 4 |a Journal Article 
700 1 |a Shen, Junchen  |e verfasserin  |4 aut 
700 1 |a He, Gaoqi  |e verfasserin  |4 aut 
700 1 |a Sun, Yu  |e verfasserin  |4 aut 
700 1 |a Ling, Haibin  |e verfasserin  |4 aut 
700 1 |a Zha, Hongyuan  |e verfasserin  |4 aut 
700 1 |a Li, Honglin  |e verfasserin  |4 aut 
700 1 |a Zhang, Jie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 9 vom: 01. Aug., Seite 6126-6138  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:9  |g day:01  |g month:08  |g pages:6126-6138 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3378729  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 9  |b 01  |c 08  |h 6126-6138