A Transformative Topological Representation for Link Modeling, Prediction and Cross-Domain Network Analysis
Many complex social, biological, or physical systems are characterized as networks, and recovering the missing links of a network could shed important lights on its structure and dynamics. A good topological representation is crucial to accurate link modeling and prediction, yet how to account for t...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 9 vom: 01. Aug., Seite 6126-6138 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | Many complex social, biological, or physical systems are characterized as networks, and recovering the missing links of a network could shed important lights on its structure and dynamics. A good topological representation is crucial to accurate link modeling and prediction, yet how to account for the kaleidoscopic changes in link formation patterns remains a challenge, especially for analysis in cross-domain studies. We propose a new link representation scheme by projecting the local environment of a link into a "dipole plane", where neighboring nodes of the link are positioned via their relative proximity to the two anchors of the link, like a dipole. By doing this, complex and discrete topology arising from link formation is turned to differentiable point-cloud distribution, opening up new possibilities for topological feature-engineering with desired expressiveness, interpretability and generalization. Our approach has comparable or even superior results against state-of-the-art GNNs, meanwhile with a model up to hundreds of times smaller and running much faster. Furthermore, it provides a universal platform to systematically profile, study, and compare link-patterns from miscellaneous real-world networks. This allows building a global link-pattern atlas, based on which we have uncovered interesting common patterns of link formation, i.e., the bridge-style, the radiation-style, and the community-style across a wide collection of networks with highly different nature |
---|---|
Beschreibung: | Date Revised 07.08.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2024.3378729 |