|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM369603192 |
003 |
DE-627 |
005 |
20240326235822.0 |
007 |
cr uuu---uuuuu |
008 |
240313s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2024.3374093
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1349.xml
|
035 |
|
|
|a (DE-627)NLM369603192
|
035 |
|
|
|a (NLM)38470592
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhao, Yin-Ping
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a RCUMP
|b Residual Completion Unrolling With Mixed Priors for Snapshot Compressive Imaging
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 26.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Deep unrolling-based snapshot compressive imaging (SCI) methods, which employ iterative formulas to construct interpretable iterative frameworks and embedded learnable modules, have achieved remarkable success in reconstructing 3-dimensional (3D) hyperspectral images (HSIs) from 2D measurement induced by coded aperture snapshot spectral imaging (CASSI). However, the existing deep unrolling-based methods are limited by the residuals associated with Taylor approximations and the poor representation ability of single hand-craft priors. To address these issues, we propose a novel HSI construction method named residual completion unrolling with mixed priors (RCUMP). RCUMP exploits a residual completion branch to solve the residual problem and incorporates mixed priors composed of a novel deep sparse prior and mask prior to enhance the representation ability. Our proposed CNN-based model can significantly reduce memory cost, which is an obvious improvement over previous CNN methods, and achieves better performance compared with the state-of-the-art transformer and RNN methods. In this work, our method is compared with the 9 most recent baselines on 10 scenes. The results show that our method consistently outperforms all the other methods while decreasing memory consumption by up to 80%
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Zhang, Jiancheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Yongyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Zhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xuelong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 33(2024) vom: 26., Seite 2347-2360
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2024
|g day:26
|g pages:2347-2360
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2024.3374093
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2024
|b 26
|h 2347-2360
|