RCUMP : Residual Completion Unrolling With Mixed Priors for Snapshot Compressive Imaging

Deep unrolling-based snapshot compressive imaging (SCI) methods, which employ iterative formulas to construct interpretable iterative frameworks and embedded learnable modules, have achieved remarkable success in reconstructing 3-dimensional (3D) hyperspectral images (HSIs) from 2D measurement induc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 26., Seite 2347-2360
1. Verfasser: Zhao, Yin-Ping (VerfasserIn)
Weitere Verfasser: Zhang, Jiancheng, Chen, Yongyong, Wang, Zhen, Li, Xuelong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369603192
003 DE-627
005 20240326235822.0
007 cr uuu---uuuuu
008 240313s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3374093  |2 doi 
028 5 2 |a pubmed24n1349.xml 
035 |a (DE-627)NLM369603192 
035 |a (NLM)38470592 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Yin-Ping  |e verfasserin  |4 aut 
245 1 0 |a RCUMP  |b Residual Completion Unrolling With Mixed Priors for Snapshot Compressive Imaging 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep unrolling-based snapshot compressive imaging (SCI) methods, which employ iterative formulas to construct interpretable iterative frameworks and embedded learnable modules, have achieved remarkable success in reconstructing 3-dimensional (3D) hyperspectral images (HSIs) from 2D measurement induced by coded aperture snapshot spectral imaging (CASSI). However, the existing deep unrolling-based methods are limited by the residuals associated with Taylor approximations and the poor representation ability of single hand-craft priors. To address these issues, we propose a novel HSI construction method named residual completion unrolling with mixed priors (RCUMP). RCUMP exploits a residual completion branch to solve the residual problem and incorporates mixed priors composed of a novel deep sparse prior and mask prior to enhance the representation ability. Our proposed CNN-based model can significantly reduce memory cost, which is an obvious improvement over previous CNN methods, and achieves better performance compared with the state-of-the-art transformer and RNN methods. In this work, our method is compared with the 9 most recent baselines on 10 scenes. The results show that our method consistently outperforms all the other methods while decreasing memory consumption by up to 80% 
650 4 |a Journal Article 
700 1 |a Zhang, Jiancheng  |e verfasserin  |4 aut 
700 1 |a Chen, Yongyong  |e verfasserin  |4 aut 
700 1 |a Wang, Zhen  |e verfasserin  |4 aut 
700 1 |a Li, Xuelong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 26., Seite 2347-2360  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:26  |g pages:2347-2360 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3374093  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 26  |h 2347-2360