RCUMP : Residual Completion Unrolling With Mixed Priors for Snapshot Compressive Imaging
Deep unrolling-based snapshot compressive imaging (SCI) methods, which employ iterative formulas to construct interpretable iterative frameworks and embedded learnable modules, have achieved remarkable success in reconstructing 3-dimensional (3D) hyperspectral images (HSIs) from 2D measurement induc...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 26., Seite 2347-2360 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Deep unrolling-based snapshot compressive imaging (SCI) methods, which employ iterative formulas to construct interpretable iterative frameworks and embedded learnable modules, have achieved remarkable success in reconstructing 3-dimensional (3D) hyperspectral images (HSIs) from 2D measurement induced by coded aperture snapshot spectral imaging (CASSI). However, the existing deep unrolling-based methods are limited by the residuals associated with Taylor approximations and the poor representation ability of single hand-craft priors. To address these issues, we propose a novel HSI construction method named residual completion unrolling with mixed priors (RCUMP). RCUMP exploits a residual completion branch to solve the residual problem and incorporates mixed priors composed of a novel deep sparse prior and mask prior to enhance the representation ability. Our proposed CNN-based model can significantly reduce memory cost, which is an obvious improvement over previous CNN methods, and achieves better performance compared with the state-of-the-art transformer and RNN methods. In this work, our method is compared with the 9 most recent baselines on 10 scenes. The results show that our method consistently outperforms all the other methods while decreasing memory consumption by up to 80% |
---|---|
Beschreibung: | Date Revised 26.03.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2024.3374093 |