RCUMP : Residual Completion Unrolling With Mixed Priors for Snapshot Compressive Imaging

Deep unrolling-based snapshot compressive imaging (SCI) methods, which employ iterative formulas to construct interpretable iterative frameworks and embedded learnable modules, have achieved remarkable success in reconstructing 3-dimensional (3D) hyperspectral images (HSIs) from 2D measurement induc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 26., Seite 2347-2360
1. Verfasser: Zhao, Yin-Ping (VerfasserIn)
Weitere Verfasser: Zhang, Jiancheng, Chen, Yongyong, Wang, Zhen, Li, Xuelong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Deep unrolling-based snapshot compressive imaging (SCI) methods, which employ iterative formulas to construct interpretable iterative frameworks and embedded learnable modules, have achieved remarkable success in reconstructing 3-dimensional (3D) hyperspectral images (HSIs) from 2D measurement induced by coded aperture snapshot spectral imaging (CASSI). However, the existing deep unrolling-based methods are limited by the residuals associated with Taylor approximations and the poor representation ability of single hand-craft priors. To address these issues, we propose a novel HSI construction method named residual completion unrolling with mixed priors (RCUMP). RCUMP exploits a residual completion branch to solve the residual problem and incorporates mixed priors composed of a novel deep sparse prior and mask prior to enhance the representation ability. Our proposed CNN-based model can significantly reduce memory cost, which is an obvious improvement over previous CNN methods, and achieves better performance compared with the state-of-the-art transformer and RNN methods. In this work, our method is compared with the 9 most recent baselines on 10 scenes. The results show that our method consistently outperforms all the other methods while decreasing memory consumption by up to 80%
Beschreibung:Date Revised 26.03.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2024.3374093