Self-Supervised Monocular Depth Estimation With Positional Shift Depth Variance and Adaptive Disparity Quantization
Recently, attempts to learn the underlying 3D structures of a scene from monocular videos in a fully self-supervised fashion have drawn much attention. One of the most challenging aspects of this task is to handle independently moving objects as they break the rigid-scene assumption. In this paper,...
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 29., Seite 2074-2089 |
---|---|
Auteur principal: | |
Autres auteurs: | , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2024
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Sujets: | Journal Article |
Accès en ligne |
Volltext |