Self-Supervised Monocular Depth Estimation With Positional Shift Depth Variance and Adaptive Disparity Quantization

Recently, attempts to learn the underlying 3D structures of a scene from monocular videos in a fully self-supervised fashion have drawn much attention. One of the most challenging aspects of this task is to handle independently moving objects as they break the rigid-scene assumption. In this paper,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 18., Seite 2074-2089
1. Verfasser: Gonzalez Bello, Juan Luis (VerfasserIn)
Weitere Verfasser: Moon, Jaeho, Kim, Munchurl
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article