Self-Supervised Monocular Depth Estimation With Positional Shift Depth Variance and Adaptive Disparity Quantization
Recently, attempts to learn the underlying 3D structures of a scene from monocular videos in a fully self-supervised fashion have drawn much attention. One of the most challenging aspects of this task is to handle independently moving objects as they break the rigid-scene assumption. In this paper,...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 18., Seite 2074-2089 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |