Efficient Single Correspondence Voting for Point Cloud Registration

3D point cloud registration is a crucial task in a variety of fields, including remote sensing mapping, computer vision, virtual reality, and autonomous driving. However, this task is still challenging due to the challenges of noise, non-uniformity, partial overlap, and repeated local features in la...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 29., Seite 2116-2130
1. Verfasser: Xing, Xuejun (VerfasserIn)
Weitere Verfasser: Lu, Zhengda, Wang, Yiqun, Xiao, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM369603168
003 DE-627
005 20250305222537.0
007 cr uuu---uuuuu
008 240313s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3374120  |2 doi 
028 5 2 |a pubmed25n1231.xml 
035 |a (DE-627)NLM369603168 
035 |a (NLM)38470588 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xing, Xuejun  |e verfasserin  |4 aut 
245 1 0 |a Efficient Single Correspondence Voting for Point Cloud Registration 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a 3D point cloud registration is a crucial task in a variety of fields, including remote sensing mapping, computer vision, virtual reality, and autonomous driving. However, this task is still challenging due to the challenges of noise, non-uniformity, partial overlap, and repeated local features in large scene point clouds. In this paper, we propose an efficient single correspondence voting method for large scene point cloud registration. Specifically, we first propose an efficient hypothetical transformation prediction method called SCVC, which determines the 5 degrees of freedom of the transformation through one correspondence, and then uses Hough voting to determine the last degree of freedom. This algorithm can significantly improve the accuracy of registration in both indoor and outdoor scenes. On the other hand, we propose a more robust transformation verification function called VDIR, which can obtain the optimal registration result of two raw point clouds. Finally, we conduct a series of experiments that demonstrate that our method achieves state-of-the-art performance on four real-world datasets: 3DMatch, 3DLoMatch, KITTI, and WHU-TLS. Our code is available at https://github.com/xingxuejun1989/SCVC 
650 4 |a Journal Article 
700 1 |a Lu, Zhengda  |e verfasserin  |4 aut 
700 1 |a Wang, Yiqun  |e verfasserin  |4 aut 
700 1 |a Xiao, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 29., Seite 2116-2130  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:29  |g pages:2116-2130 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3374120  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 29  |h 2116-2130