A Large-Scale Network Construction and Lightweighting Method for Point Cloud Semantic Segmentation

To significantly enhance the performance of point cloud semantic segmentation, this manuscript presents a novel method for constructing large-scale networks and offers an effective lightweighting technique. First, a latent point feature processing (LPFP) module is utilized to interconnect base netwo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 20., Seite 2004-2017
1. Verfasser: Han, Jiawei (VerfasserIn)
Weitere Verfasser: Liu, Kaiqi, Li, Wei, Chen, Guangzhi, Wang, Wenguang, Zhang, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369415191
003 DE-627
005 20240320234607.0
007 cr uuu---uuuuu
008 240308s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3372446  |2 doi 
028 5 2 |a pubmed24n1337.xml 
035 |a (DE-627)NLM369415191 
035 |a (NLM)38451762 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Jiawei  |e verfasserin  |4 aut 
245 1 2 |a A Large-Scale Network Construction and Lightweighting Method for Point Cloud Semantic Segmentation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a To significantly enhance the performance of point cloud semantic segmentation, this manuscript presents a novel method for constructing large-scale networks and offers an effective lightweighting technique. First, a latent point feature processing (LPFP) module is utilized to interconnect base networks such as PointNet++ and Point Transformer. This intermediate module serves both as a feature information transfer and a ground truth supervision function. Furthermore, in order to alleviate the increase in computational costs brought by constructing large-scale networks and better adapt to the demand for terminal deployment, a novel point cloud lightweighting method for semantic segmentation network (PCLN) is proposed to compress the network by transferring multidimensional feature information of large-scale networks. Specifically, at different stages of the large-scale network, the structure and attention information of the point features are selectively transferred to guide the compressed network to train in the direction of the large-scale network. This paper also solves the problem of representing global structure information of large-scale point clouds through feature sampling and aggregation. Extensive experiments on public datasets and real-world data demonstrate that the proposed method can significantly improve the performance of different base networks and outperform the state-of-the-art 
650 4 |a Journal Article 
700 1 |a Liu, Kaiqi  |e verfasserin  |4 aut 
700 1 |a Li, Wei  |e verfasserin  |4 aut 
700 1 |a Chen, Guangzhi  |e verfasserin  |4 aut 
700 1 |a Wang, Wenguang  |e verfasserin  |4 aut 
700 1 |a Zhang, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 20., Seite 2004-2017  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:20  |g pages:2004-2017 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3372446  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 20  |h 2004-2017