A Large-Scale Network Construction and Lightweighting Method for Point Cloud Semantic Segmentation
To significantly enhance the performance of point cloud semantic segmentation, this manuscript presents a novel method for constructing large-scale networks and offers an effective lightweighting technique. First, a latent point feature processing (LPFP) module is utilized to interconnect base netwo...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 20., Seite 2004-2017 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | To significantly enhance the performance of point cloud semantic segmentation, this manuscript presents a novel method for constructing large-scale networks and offers an effective lightweighting technique. First, a latent point feature processing (LPFP) module is utilized to interconnect base networks such as PointNet++ and Point Transformer. This intermediate module serves both as a feature information transfer and a ground truth supervision function. Furthermore, in order to alleviate the increase in computational costs brought by constructing large-scale networks and better adapt to the demand for terminal deployment, a novel point cloud lightweighting method for semantic segmentation network (PCLN) is proposed to compress the network by transferring multidimensional feature information of large-scale networks. Specifically, at different stages of the large-scale network, the structure and attention information of the point features are selectively transferred to guide the compressed network to train in the direction of the large-scale network. This paper also solves the problem of representing global structure information of large-scale point clouds through feature sampling and aggregation. Extensive experiments on public datasets and real-world data demonstrate that the proposed method can significantly improve the performance of different base networks and outperform the state-of-the-art |
---|---|
Beschreibung: | Date Revised 20.03.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2024.3372446 |