Corr-Track : Category-Level 6D Pose Tracking with Soft-Correspondence Matrix Estimation

Category-level pose tracking methods can continuously track the pose of objects without requiring any prior knowledge of the specific shape of the tracked instance. This makes them advantageous in augmented reality and virtual reality applications. The key challenge is how to train neural networks t...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 5 vom: 04. Mai, Seite 2173-2183
Auteur principal: Cao, Xin (Auteur)
Autres auteurs: Li, Jia, Zhao, Panpan, Li, Jiachen, Qin, Xueying
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM369269926
003 DE-627
005 20250305213540.0
007 cr uuu---uuuuu
008 240305s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3372111  |2 doi 
028 5 2 |a pubmed25n1230.xml 
035 |a (DE-627)NLM369269926 
035 |a (NLM)38437129 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cao, Xin  |e verfasserin  |4 aut 
245 1 0 |a Corr-Track  |b Category-Level 6D Pose Tracking with Soft-Correspondence Matrix Estimation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Category-level pose tracking methods can continuously track the pose of objects without requiring any prior knowledge of the specific shape of the tracked instance. This makes them advantageous in augmented reality and virtual reality applications. The key challenge is how to train neural networks to accurately predict the poses of objects they have never seen before and exhibit strong generalization performance. We propose a novel category-level 6D pose tracking method Corr-Track, which is capable of accurately tracking objects belonging to the same category from depth video streams. Our approach utilizes direct soft correspondence constraints to train a neural network, which estimates bidirectional soft correspondences between sparsely sampled point clouds of objects in two frames. We first introduce a soft correspondence matrix for pose tracking tasks and establish effective constraints through direct spatial point-to-point correspondence representations in the sparse point cloud correspondence matrix. We propose the "point cloud expansion" strategy to address the "point cloud shrinkage" problem resulting from soft correspondences. This strategy ensures that the corresponding point cloud accurately reproduces the shape of the target point cloud, leading to precise pose tracking results. We evaluated our approach on the NOCS-REAL275 and Wild6D dataset and observed superior performance compared to previous methods. Additionally, we conducted cross-category experiments that further demonstrated its generalization capability 
650 4 |a Journal Article 
700 1 |a Li, Jia  |e verfasserin  |4 aut 
700 1 |a Zhao, Panpan  |e verfasserin  |4 aut 
700 1 |a Li, Jiachen  |e verfasserin  |4 aut 
700 1 |a Qin, Xueying  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 5 vom: 04. Mai, Seite 2173-2183  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:30  |g year:2024  |g number:5  |g day:04  |g month:05  |g pages:2173-2183 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3372111  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 5  |b 04  |c 05  |h 2173-2183