|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM368938425 |
003 |
DE-627 |
005 |
20240524232441.0 |
007 |
cr uuu---uuuuu |
008 |
240229s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202313753
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1417.xml
|
035 |
|
|
|a (DE-627)NLM368938425
|
035 |
|
|
|a (NLM)38403869
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Ruiling
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Extreme Thermal Insulation and Tradeoff of Thermal Transport Mechanisms between Graphene and WS2 Monolayers
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.05.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Controlling and understanding the heat flow at a nanometer scale are challenging, but important for fundamental science and applications. Two-dimensional (2D) layered materials provide perhaps the ultimate solution for meeting these challenges. While there have been reports of low thermal conductivities (several mW m-1 K-1) across the 2D heterostructures, phonon-dominant thermal transport remains strong due to the nearly-ideal contact between the layers. Here, this work experimentally explores the heat transport mechanisms by increasing the interlayer distance from perfect contact to a few nanometers and demonstrates that the phonon-dominated thermal conductivity across the WS2/graphene interface decreases further with the increasing interlayer distance until the air-dominated thermal conductivity increases again. This work finds that the resulting tradeoff of the two heat conduction mechanisms leads to the existence of a minimum thermal conductivity at 2.11 nm of 1.41 × 10-5 W m-1 K-1, which is two thousandths of the smallest value reported previously. This work provides an effective methodology for engineering thermal insulation structures and understanding heat transport at the ultimate small scales
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D van der Waals heterostructures
|
650 |
|
4 |
|a Raman spectroscopy
|
650 |
|
4 |
|a air heat conduction
|
650 |
|
4 |
|a interlayer phonon coupling
|
650 |
|
4 |
|a thermal insulation
|
700 |
1 |
|
|a Gan, Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Danyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yongzhuo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ning, Cun-Zheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 21 vom: 23. Mai, Seite e2313753
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:21
|g day:23
|g month:05
|g pages:e2313753
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202313753
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 21
|b 23
|c 05
|h e2313753
|