Extreme Thermal Insulation and Tradeoff of Thermal Transport Mechanisms between Graphene and WS2 Monolayers
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 21 vom: 23. Mai, Seite e2313753 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article 2D van der Waals heterostructures Raman spectroscopy air heat conduction interlayer phonon coupling thermal insulation |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Controlling and understanding the heat flow at a nanometer scale are challenging, but important for fundamental science and applications. Two-dimensional (2D) layered materials provide perhaps the ultimate solution for meeting these challenges. While there have been reports of low thermal conductivities (several mW m-1 K-1) across the 2D heterostructures, phonon-dominant thermal transport remains strong due to the nearly-ideal contact between the layers. Here, this work experimentally explores the heat transport mechanisms by increasing the interlayer distance from perfect contact to a few nanometers and demonstrates that the phonon-dominated thermal conductivity across the WS2/graphene interface decreases further with the increasing interlayer distance until the air-dominated thermal conductivity increases again. This work finds that the resulting tradeoff of the two heat conduction mechanisms leads to the existence of a minimum thermal conductivity at 2.11 nm of 1.41 × 10-5 W m-1 K-1, which is two thousandths of the smallest value reported previously. This work provides an effective methodology for engineering thermal insulation structures and understanding heat transport at the ultimate small scales |
---|---|
Beschreibung: | Date Revised 24.05.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202313753 |