Transformable Supramolecular Self-Assembled Peptides for Cascade Self-Enhanced Ferroptosis Primed Cancer Immunotherapy

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 21 vom: 24. Mai, Seite e2311733
1. Verfasser: Wang, He (VerfasserIn)
Weitere Verfasser: Jiao, Di, Feng, Dexiang, Liu, Qian, Huang, Yuhua, Hou, Jianquan, Ding, Dan, Zhang, Weijie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article enzyme‐instructed peptide self‐assembly (EISA) ferroptosis immunogenic cell death lysosomal‐membrane permeabilization prostate cancer Peptides Phospholipid Hydroperoxide Glutathione Peroxidase EC 1.11.1.12
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Immunotherapy has received widespread attention for its effective and long-term tumor-eliminating ability. However, for immunogenic "cold" tumors, such as prostate cancer (PCa), the low immunogenicity of the tumor itself is a serious obstacle to efficacy. Here, this work reports a strategy to enhance PCa immunogenicity by triggering cascade self-enhanced ferroptosis in tumor cells, turning the tumor from "cold" to "hot". This work develops a transformable self-assembled peptide TEP-FFG-CRApY with alkaline phosphatase (ALP) responsiveness and glutathione peroxidase 4 (GPX4) protein targeting. TEP-FFG-CRApY self-assembles into nanoparticles under aqueous conditions and transforms into nanofibers in response to ALP during endosome/lysosome uptake into tumor cells, promoting lysosomal membrane permeabilization (LMP). On the one hand, the released TEP-FFG-CRAY nanofibers target GPX4 and selectively degrade the GPX4 protein under the light irradiation, inducing ferroptosis; on the other hand, the large amount of leaked Fe2+ further cascade to amplify the ferroptosis through the Fenton reaction. TEP-FFG-CRApY-induced immunogenic ferroptosis improves tumor cell immunogenicity by promoting the maturation of dendritic cells (DCs) and increasing intratumor T-cell infiltration. More importantly, recovered T cells further enhance ferroptosis by secreting large amounts of interferon-gamma (IFN-γ). This work provides a novel strategy for the molecular design of synergistic molecularly targeted therapy for immunogenic "cold" tumors
Beschreibung:Date Completed 24.05.2024
Date Revised 24.05.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202311733