POMFinder : identifying polyoxometallate cluster structures from pair distribution function data using explainable machine learning

© Andy S. Anker et al. 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 57(2024), Pt 1 vom: 01. Feb., Seite 34-43
1. Verfasser: Anker, Andy S (VerfasserIn)
Weitere Verfasser: Kjær, Emil T S, Juelsholt, Mikkel, Jensen, Kirsten M Ø
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article POMFinder computational modelling machine learning polyoxometallate clusters
LEADER 01000caa a22002652 4500
001 NLM36811922X
003 DE-627
005 20240210233255.0
007 cr uuu---uuuuu
008 240207s2024 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576723010014  |2 doi 
028 5 2 |a pubmed24n1287.xml 
035 |a (DE-627)NLM36811922X 
035 |a (NLM)38322723 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Anker, Andy S  |e verfasserin  |4 aut 
245 1 0 |a POMFinder  |b identifying polyoxometallate cluster structures from pair distribution function data using explainable machine learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.02.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Andy S. Anker et al. 2024. 
520 |a Characterization of a material structure with pair distribution function (PDF) analysis typically involves refining a structure model against an experimental data set, but finding or constructing a suitable atomic model for PDF modelling can be an extremely labour-intensive task, requiring carefully browsing through large numbers of possible models. Presented here is POMFinder, a machine learning (ML) classifier that rapidly screens a database of structures, here polyoxometallate (POM) clusters, to identify candidate structures for PDF data modelling. The approach is shown to identify suitable POMs from experimental data, including in situ data collected with fast acquisition times. This automated approach has significant potential for identifying suitable models for structure refinement to extract quantitative structural parameters in materials chemistry research. POMFinder is open source and user friendly, making it accessible to those without prior ML knowledge. It is also demonstrated that POMFinder offers a promising modelling framework for combined modelling of multiple scattering techniques 
650 4 |a Journal Article 
650 4 |a POMFinder 
650 4 |a computational modelling 
650 4 |a machine learning 
650 4 |a polyoxometallate clusters 
700 1 |a Kjær, Emil T S  |e verfasserin  |4 aut 
700 1 |a Juelsholt, Mikkel  |e verfasserin  |4 aut 
700 1 |a Jensen, Kirsten M Ø  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 57(2024), Pt 1 vom: 01. Feb., Seite 34-43  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:57  |g year:2024  |g number:Pt 1  |g day:01  |g month:02  |g pages:34-43 
856 4 0 |u http://dx.doi.org/10.1107/S1600576723010014  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2024  |e Pt 1  |b 01  |c 02  |h 34-43